Open Access System for Information Sharing

Login Library

 

Article
Cited 16 time in webofscience Cited 15 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKANG, JONG HOON-
dc.contributor.authorLuo, L.-
dc.contributor.authorMootz, M.-
dc.contributor.authorHuang, C.-
dc.contributor.authorEom, K.-
dc.contributor.authorLee, J.W.-
dc.contributor.authorVaswani, C.-
dc.contributor.authorCollantes, Y.G.-
dc.contributor.authorHellstrom, E.E.-
dc.contributor.authorPerakis, I.E.-
dc.contributor.authorEom, C.B.-
dc.contributor.authorWang, J.-
dc.date.accessioned2023-02-23T06:20:25Z-
dc.date.available2023-02-23T06:20:25Z-
dc.date.created2023-02-22-
dc.date.issued2023-02-
dc.identifier.issn1745-2473-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/115476-
dc.description.abstractThe coupling between superconductors and oscillation cycles of light pulses, i.e., lightwave engineering, is an emerging control concept for superconducting quantum electronics. Although progress has been made towards terahertz-driven superconductivity and supercurrents, the interactions able to drive non-equilibrium pairing are still poorly understood, partially due to the lack of measurements of high-order correlation functions. In particular, the sensing of exotic collective modes that would uniquely characterize light-driven superconducting coherence, in a way analogous to the Meissner effect, is very challenging but much needed. Here we report the discovery of parametrically driven superconductivity by light-induced order-parameter collective oscillations in iron-based superconductors. The time-periodic relative phase dynamics between the coupled electron and hole bands drives the transition to a distinct parametric superconducting state out-of-equalibrium. This light-induced emergent coherence is characterized by a unique phase–amplitude collective mode with Floquet-like sidebands at twice the Higgs frequency. We measure non-perturbative, high-order correlations of this parametrically driven superconductivity by separating the terahertz-frequency multidimensional coherent spectra into pump–probe, Higgs mode and bi-Higgs frequency sideband peaks. We find that the higher-order bi-Higgs sidebands dominate above the critical field, which indicates the breakdown of susceptibility perturbative expansion in this parametric quantum matter.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNature Physics-
dc.titleQuantum coherence tomography of lightwave-controlled superconductivity-
dc.typeArticle-
dc.identifier.doi10.1038/s41567-022-01827-1-
dc.type.rimsART-
dc.identifier.bibliographicCitationNature Physics, v.19, pp.201 - 209-
dc.identifier.wosid000894375500001-
dc.citation.endPage209-
dc.citation.startPage201-
dc.citation.titleNature Physics-
dc.citation.volume19-
dc.contributor.affiliatedAuthorKANG, JONG HOON-
dc.identifier.scopusid2-s2.0-85143280316-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

강종훈KANG, JONG HOON
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse