Open Access System for Information Sharing

Login Library

 

Article
Cited 15 time in webofscience Cited 16 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorKarabin, ME-
dc.contributor.authorBarlat, F-
dc.contributor.authorShuey, RT-
dc.date.accessioned2015-06-25T02:44:35Z-
dc.date.available2015-06-25T02:44:35Z-
dc.date.created2010-05-06-
dc.date.issued2009-02-
dc.identifier.issn1073-5623-
dc.identifier.other2015-OAK-0000016870en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/11547-
dc.description.abstractIn this work, the constitutive model for 7085-T7X (overaged) aluminum alloy plate samples with controlled microstructures was developed. Different lengths of 2nd step aging times produced samples with similar microstructure but different stress-strain curves (i.e., different nanostructure). A conventional phenomenological strain-hardening law with no strain gradient effects was proposed to capture the peculiar hardening behavior of the material samples investigated in this work. The classical Gurson-Tvergaard potential, which includes the influence of void volume fraction (VVF) on the plastic flow behavior, as well as an extension proposed by Leblond et al.,([3]) were considered. Unlike the former, the latter is able to account for the influence of strain hardening on the VVF growth. All the constitutive coefficients used in this work were based on experimental stress-strain curves obtained in uniaxial tension and on micromechanical modeling results of a void embedded in a matrix. These material models were used in finite element (FE) simulations of a compact tension (CT) specimen. An engineering criterion based on the instability of plastic flow at a crack tip was used for the determination of plane strain toughness K (Ic) . The influence of the microstructure was lumped into a single state variable, the initial void volume fraction. The simulation results showed that the strain-hardening behavior has a significant influence on K (Ic) .-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherSPRINGER-
dc.relation.isPartOfMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleFinite Element Modeling of Plane Strain Toughness for 7085 Aluminum Alloy-
dc.typeArticle-
dc.contributor.college철강대학원en_US
dc.identifier.doi10.1007/s11661-008-9705-0-
dc.author.googleKarabin, MEen_US
dc.author.googleBarlat, Fen_US
dc.author.googleShuey, RTen_US
dc.relation.volume40Aen_US
dc.relation.issue2en_US
dc.relation.startpage354en_US
dc.relation.lastpage364en_US
dc.contributor.id10200290en_US
dc.relation.journalMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCEen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, v.40A, no.2, pp.354 - 364-
dc.identifier.wosid000262565900015-
dc.date.tcdate2019-01-01-
dc.citation.endPage364-
dc.citation.number2-
dc.citation.startPage354-
dc.citation.titleMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE-
dc.citation.volume40A-
dc.contributor.affiliatedAuthorBarlat, F-
dc.identifier.scopusid2-s2.0-59149094321-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc9-
dc.type.docTypeArticle-
dc.subject.keywordPlusDUCTILE FAILURE-
dc.subject.keywordPlusCRACK-TIP-
dc.subject.keywordPlusVOID GROWTH-
dc.subject.keywordPlusFRACTURE-TOUGHNESS-
dc.subject.keywordPlusGRAIN-BOUNDARY-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusMETALS-
dc.subject.keywordPlusCOALESCENCE-
dc.subject.keywordPlusINITIATION-
dc.subject.keywordPlusRUPTURE-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse