Open Access System for Information Sharing

Login Library

 

Article
Cited 41 time in webofscience Cited 41 time in scopus
Metadata Downloads

Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping SCIE SCOPUS

Title
Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping
Authors
Kwon, BitnuriBae, HyeonhuLee, HoonkyungKim, Seunghyun황진현임형섭Lee, Jung HunCho, KilwonYe, JongpilLee, SeungaeLee, Wi Hyoung
Date Issued
2022-02
Publisher
American Chemical Society
Abstract
Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines The exposure of the n-doped graphene to oxidizing gases such as NO 2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10(-15)), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular ndoping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.
URI
https://oasis.postech.ac.kr/handle/2014.oak/115924
DOI
10.1021/acsnano.1c08186
ISSN
1936-0851
Article Type
Article
Citation
ACS Nano, vol. 16, no. 2, page. 2176 - 2187, 2022-02
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조길원CHO, KIL WON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse