Open Access System for Information Sharing

Login Library

 

Article
Cited 20 time in webofscience Cited 22 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorYazdabadi, HG-
dc.contributor.authorEkrami, A-
dc.contributor.authorKim, HS-
dc.contributor.authorSimchi, A-
dc.date.accessioned2015-06-25T02:46:20Z-
dc.date.available2015-06-25T02:46:20Z-
dc.date.created2014-03-22-
dc.date.issued2013-06-
dc.identifier.issn1073-5623-
dc.identifier.other2015-OAK-0000029774en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/11602-
dc.description.abstractA tensile-compression fatigue response of Al matrix composites containing different amount of SiC nanoparticles (50 nm diameter) up to 6 vol. pct was studied. The nanocomposite powders were prepared by a powder metallurgy (P/M) route consisting of mechanical alloying, hot extrusion, and hot closed-die forging. The microstructure of the materials was evaluated by optical microscopy, scanning and transmission electron microscopies, and electron backscattered diffraction. A fine distribution of the nanoparticles in submicron and ultrafine grains was obtained. The low cycle fatigue behavior was examined in stress control mode under fully reversed tension-compression cycle at 1 Hz up to 1000 cycles. High cycle fatigue was conducted using a push-pull test up to 10(7) cycles with the minimum to maximum stress ratio of 0.1 at a frequency of 40 Hz. Cyclic hardening was observed at a low cycle fatigue regime with an enhanced hardening rate in the presence of SiC nanocomposite. The fatigue endurance limit at 10(7) cycles was also improved by nanoparticles. Fractographic studies revealed a mixture of ductile-brittle fracture modes with an increase in the ductile fracture mode at higher SiC fractions. The fatigue fracture mechanism was found to be local ductile deformation, microscopic void formation, and coalescence. DOI: 10.1007/s11661-013-1620-3 (C) The Minerals, Metals & Materials Society and ASM International 2013-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherSPRINGER-
dc.relation.isPartOfMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleAn Investigation on the Fatigue Fracture of P/M Al-SiC Nanocomposites-
dc.typeArticle-
dc.contributor.college신소재공학과en_US
dc.identifier.doi10.1007/S11661-013-1620-3-
dc.author.googleYazdabadi, HGen_US
dc.author.googleEkrami, Aen_US
dc.author.googleSimchi, Aen_US
dc.author.googleKim, HSen_US
dc.relation.volume44Aen_US
dc.relation.issue6en_US
dc.relation.startpage2662en_US
dc.relation.lastpage2671en_US
dc.contributor.id10056225en_US
dc.relation.journalMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCEen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, v.44A, no.6, pp.2662 - 2671-
dc.identifier.wosid000317930200021-
dc.date.tcdate2019-01-01-
dc.citation.endPage2671-
dc.citation.number6-
dc.citation.startPage2662-
dc.citation.titleMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE-
dc.citation.volume44A-
dc.contributor.affiliatedAuthorKim, HS-
dc.identifier.scopusid2-s2.0-84877013539-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc12-
dc.description.scptc12*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusPARAMETERS-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusPOWDER-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusFINE-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse