Open Access System for Information Sharing

Login Library

 

Article
Cited 7 time in webofscience Cited 7 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorSong, Woochul-
dc.contributor.authorPark, Jaesung-
dc.contributor.authorDasgupta, Subhadeep-
dc.contributor.authorYao, Chenhao-
dc.contributor.authorMaroli, Nikhil-
dc.contributor.authorBehera, Harekrushna-
dc.contributor.authorYin, Xinyang-
dc.contributor.authorAcharya, Durga P.-
dc.contributor.authorZhang, Xueyi-
dc.contributor.authorDoherty, Cara M.-
dc.contributor.authorMaiti, Prabal K.-
dc.contributor.authorFreeman, Benny D.-
dc.contributor.authorKumar, Manish-
dc.date.accessioned2023-03-02T09:20:47Z-
dc.date.available2023-03-02T09:20:47Z-
dc.date.created2023-03-02-
dc.date.issued2022-07-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/116330-
dc.description.abstractMolecular sieve membranes and their analogues could potentially transform energy-intensive gas separation processes. However, many such membranes suffer from either limited process ability or physical stability including plasticization of semi-flexible microstructures. Here, we report on a new variation of all-polymer-based molecular sieve membranes that could tackle these specific challenges. These membranes were prepared by the interfacial polymerization of pillar[5]arene, m-phenylenediamine, and trimesoyl chloride to create characteristic poly(arylate-amide) heteropolymer microstructures. Pillar[S]arenes were crosslinked into the films with net weight fractions of up to similar to 47%, wherein the, 4.7 angstrom cavities of pillar[5]arenes were interconnected with similar to 2.8 angstrom apertures. These microstructures provided preferred permeation paths for smaller molecules (He and H-2) among the tested light gases (He, H-2, CO2, O-2, N-2, and CH4) and resulted in significant molecular sieving effects with representative pure gas selectivities of 32 (H-2/CO2), 150 (CO2/CH4), 4600 (H-2/CH4), 13 (O-2/N-2), and 4.7 (N-2/CH4) at 35 degrees C and 10 atm. These separation factors outperform most polymer-based gas separation membranes, while providing membrane features such as thin film barriers, cross-linked polymer backbones, and excellent processability resulting from interfacial polymerization that are critical for large-scale operations.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfChemistry of Materials-
dc.titleScalable Pillar[5]arene-Integrated Poly(arylate-amide) Molecular Sieve Membranes to Separate Light Gases-
dc.typeArticle-
dc.identifier.doi10.1021/acs.chemmater.2c01450-
dc.type.rimsART-
dc.identifier.bibliographicCitationChemistry of Materials, v.34, no.14, pp.6559 - 6567-
dc.identifier.wosid000834142700001-
dc.citation.endPage6567-
dc.citation.number14-
dc.citation.startPage6559-
dc.citation.titleChemistry of Materials-
dc.citation.volume34-
dc.contributor.affiliatedAuthorSong, Woochul-
dc.identifier.scopusid2-s2.0-85135561979-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse