Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLEE, SUNHYEONG-
dc.contributor.authorLEE, SEUNG WOO-
dc.contributor.authorHwang, Hyunsang-
dc.date.accessioned2023-03-03T01:40:37Z-
dc.date.available2023-03-03T01:40:37Z-
dc.date.created2023-03-02-
dc.date.issued2023-02-
dc.identifier.issn2158-3226-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/116461-
dc.description.abstract<jats:p> To maximize the multilevel data storage capability for high-density memory applications, precise control of quantized conduction with ultralow transition energy is required. We report the quantized conduction in Ag/Ag<jats:sub>2</jats:sub>S/vacuum conductive-bridge random access memory under various pulse conditions to regulate atomic motion at room temperature. Using stochastic analysis, we unveil a pulse condition for supplying the optimal energy that allows precise atom detachment and has a high dissolution probability. In addition, we calculate the transition energy required to change each quantized state for an Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> electrolyte and vacuum gap. We determine a large transition energy of Ag in Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> (8–1 mJ), hindering the precise control of quantized conduction, whereas the transition energy of Ag in vacuum is relatively low (397–95 nJ), enabling proper atomic motion. </jats:p>-
dc.languageEnglish-
dc.publisherAmerican Institute of Physics Inc.-
dc.relation.isPartOfAIP Advances-
dc.titleVacuum gap atomic switch with improved controllability of quantized conduction states and low transition energy-
dc.typeArticle-
dc.identifier.doi10.1063/5.0138238-
dc.type.rimsART-
dc.identifier.bibliographicCitationAIP Advances, v.13, no.2, pp.025053-
dc.identifier.wosid000940881600002-
dc.citation.number2-
dc.citation.startPage025053-
dc.citation.titleAIP Advances-
dc.citation.volume13-
dc.contributor.affiliatedAuthorLEE, SUNHYEONG-
dc.contributor.affiliatedAuthorLEE, SEUNG WOO-
dc.contributor.affiliatedAuthorHwang, Hyunsang-
dc.identifier.scopusid2-s2.0-85149436795-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse