Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorDONGWOOK, LEE-
dc.contributor.authorLee, Jongwon-
dc.contributor.authorCHULJUN, LEE-
dc.contributor.authorKIM, SEYOUNG-
dc.contributor.authorHwang, Hyunsang-
dc.date.accessioned2023-03-03T05:41:11Z-
dc.date.available2023-03-03T05:41:11Z-
dc.date.created2023-03-02-
dc.date.issued2022-09-
dc.identifier.issn0018-9383-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/116595-
dc.description.abstractNeuromorphic computing has gained a considerable research interest due to its potential in realizing highly efficient parallel computations. However, the existing neuromorphic architectures face various drawbacks. In this study, we present an integrate-and-fire (I&F) neuron using a Li-based electrochemical random access memory (Li-ECRAM) to achieve exceptional area efficiency and low-power neuromorphic computing. The proposed Li-ECRAM neuron employs a significantly reduced number of transistors when compared to other novel nonvolatile memory-based I&F neurons due to linear current integration characteristics and a high linear conductance response to the input current. As the integration-type Li-ECRAM is linear, it eliminates the requirement of a nonlinear compensating circuit. Therefore, a Li-ECRAM-based neuron has a simple structure comprising Li-ECRAM, reset transistor, inverter, and pulse generator. Furthermore, we also evaluate the operation speed and energy consumption of the proposed neuron, demonstrating the potential for high-speed and low-power operation. The proposed neuron can be applied in large-scale neuromorphic hardware applications due to the scalability and low energy consumption of Li-ECRAM. IEEE-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.relation.isPartOfIEEE Transactions on Electron Devices-
dc.titleIntegrate-and-Fire Neuron With Li-Based Electrochemical Random Access Memory Using Native Linear Current Integration Characteristics-
dc.typeArticle-
dc.identifier.doi10.1109/ted.2022.3188241-
dc.type.rimsART-
dc.identifier.bibliographicCitationIEEE Transactions on Electron Devices, v.69, no.9, pp.4889 - 4893-
dc.identifier.wosid000826071600001-
dc.citation.endPage4893-
dc.citation.number9-
dc.citation.startPage4889-
dc.citation.titleIEEE Transactions on Electron Devices-
dc.citation.volume69-
dc.contributor.affiliatedAuthorDONGWOOK, LEE-
dc.contributor.affiliatedAuthorLee, Jongwon-
dc.contributor.affiliatedAuthorCHULJUN, LEE-
dc.contributor.affiliatedAuthorKIM, SEYOUNG-
dc.contributor.affiliatedAuthorHwang, Hyunsang-
dc.identifier.scopusid2-s2.0-85134263507-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthorElectrochemical random access memory (ECRAM)-
dc.subject.keywordAuthorintegrate-and-fire (I&F) neuron-
dc.subject.keywordAuthorLogic gates-
dc.subject.keywordAuthorMembrane potentials-
dc.subject.keywordAuthorneuromorphic-
dc.subject.keywordAuthorNeurons-
dc.subject.keywordAuthorNonvolatile memory-
dc.subject.keywordAuthorRandom access memory-
dc.subject.keywordAuthorTransistors-
dc.subject.keywordAuthorVoltage-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

황현상HWANG, HYUNSANG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse