Open Access System for Information Sharing

Login Library

 

Article
Cited 24 time in webofscience Cited 32 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorMohammadi, Abbas-
dc.contributor.authorNovelli, Marc-
dc.contributor.authorArita, Makoto-
dc.contributor.authorBae, Jae Wung-
dc.contributor.authorKim, Hyoung Seop-
dc.contributor.authorGrosdidier, Thierry-
dc.contributor.authorEdalati, Kaveh-
dc.date.accessioned2023-04-03T06:20:31Z-
dc.date.available2023-04-03T06:20:31Z-
dc.date.created2023-03-12-
dc.date.issued2022-05-
dc.identifier.issn0010-938X-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/117093-
dc.description.abstractHigh-strength materials usually exhibit poor hydrogen embrittlement resistance, and thus, there are demands for materials with high strength and good ductility under hydrogen. Here, gradient structures containing surface nanotwins are introduced in a CrMnFeCoNi high-entropy alloy by surface mechanical attrition treatment, and hydrogen embrittlement resistance is compared with coarse-and nano-structured alloys produced by high temperature homogenization and high-pressure torsion, respectively. The coarse-grained alloy shows high ductility, but its yield stress is low. The nanostructured alloy shows ultrahigh yield stress, but with poor hydrogen embrittlement resistance. The gradient-structured alloys have both high yield stress (500-700 MPa) and good ductility (15-33%) under hydrogen.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.relation.isPartOfCORROSION SCIENCE-
dc.titleGradient-structured high-entropy alloy with improved combination of strength and hydrogen embrittlement resistance-
dc.typeArticle-
dc.identifier.doi10.1016/j.corsci.2022.110253-
dc.type.rimsART-
dc.identifier.bibliographicCitationCORROSION SCIENCE, v.200-
dc.identifier.wosid000806111100004-
dc.citation.titleCORROSION SCIENCE-
dc.citation.volume200-
dc.contributor.affiliatedAuthorKim, Hyoung Seop-
dc.identifier.scopusid2-s2.0-85126892259-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PRESSURE TORSION-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusDUCTILITY-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusNANOMATERIALS-
dc.subject.keywordPlusGRAIN-
dc.subject.keywordAuthorHydrogen compatibility-
dc.subject.keywordAuthorHydrogen diffusion-
dc.subject.keywordAuthorHigh-entropy alloys (HEAs)-
dc.subject.keywordAuthorSevere plastic deformation (SPD)-
dc.subject.keywordAuthorDeformation twin-
dc.subject.keywordAuthorNanostructured materials-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse