Open Access System for Information Sharing

Login Library

 

Article
Cited 19 time in webofscience Cited 19 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorDavami, K-
dc.contributor.authorMortazavi, B-
dc.contributor.authorGhassemi, HM-
dc.contributor.authorYassar, RS-
dc.contributor.authorLee, JS-
dc.contributor.authorRemond, Y-
dc.contributor.authorMeyyappan, M-
dc.date.accessioned2015-06-25T02:50:20Z-
dc.date.available2015-06-25T02:50:20Z-
dc.date.created2012-01-17-
dc.date.issued2011-12-
dc.identifier.issn2040-3364-
dc.identifier.other2015-OAK-0000024546en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/11728-
dc.description.abstractOne-dimensional nanostructures such as ZnTe, CdTe, Bi2Te3 and others have attracted much attention in recent years for their potential in thermoelectric devices among other applications. A better understanding of their mechanical properties is important for the design of devices. A combined experimental and computational approach has been used here to investigate the size effects on the Young's modulus of ZnTe nanowires (NWs). The mechanical properties of individual ZnTe nanowires in a wide diameter range (50-230 nm) were experimentally measured inside a high resolution transmission electron microscope using an atomic force microscope probe with the ability to record in situ continuous force-displacement curves. The in situ observations showed that ZnTe NWs are flexible nanostructures with the ability to withstand relatively high buckling forces without becoming fractured. The Young's modulus is found to be independent of nanowire diameter in the investigated range, in contrast to reported results for ZnO NWs and carbon nanotubes where the modulus increases with a decrease in diameter. Molecular dynamics simulations performed for nanowires with diameters less than 20 nm show limited size dependence for diameters smaller than 5 nm. The surface atoms present lower Young's modulus according to the simulations and the limited size dependency of the cylindrical ZnTe NWs is attributed to the short range covalent interactions.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherThe Royal Society of Chemistry-
dc.relation.isPartOfNANOSCALE-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleA computational and experimental investigation of the mechanical properties of single ZnTe nanowires-
dc.typeArticle-
dc.contributor.college정보전자융합공학부en_US
dc.identifier.doi10.1039/C2NR11593J-
dc.author.googleDavami, Ken_US
dc.author.googleMortazavi, Ben_US
dc.author.googleMeyyappan, Men_US
dc.author.googleRemond, Yen_US
dc.author.googleLee, JSen_US
dc.author.googleYassar, RSen_US
dc.author.googleGhassemi, HMen_US
dc.relation.volume4en_US
dc.relation.issue3en_US
dc.relation.startpage897en_US
dc.relation.lastpage903en_US
dc.contributor.id10084860en_US
dc.relation.journalNANOSCALEen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationNANOSCALE, v.4, no.3, pp.897 - 903-
dc.identifier.wosid000299292600031-
dc.date.tcdate2019-01-01-
dc.citation.endPage903-
dc.citation.number3-
dc.citation.startPage897-
dc.citation.titleNANOSCALE-
dc.citation.volume4-
dc.contributor.affiliatedAuthorLee, JS-
dc.identifier.scopusid2-s2.0-84863012235-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc15-
dc.description.scptc15*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON NANOTUBE-
dc.subject.keywordPlusZNO NANOWIRES-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusELASTIC PROPERTIES-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusCONSTANTS-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이정수LEE, JEONG SOO
Dept of Electrical Enginrg
Read more

Views & Downloads

Browse