Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Atomic-scale tailoring of chemisorbed atomic oxygen on epitaxial graphene for graphene-based electronic devices SCIE SCOPUS

Title
Atomic-scale tailoring of chemisorbed atomic oxygen on epitaxial graphene for graphene-based electronic devices
Authors
KIM, TAE SOOAHN, TAEMINKIM, TAE HWANCHOI, HEE CHEULYEOM, HAN WOONG
Date Issued
2023-07
Publisher
American Institute of Physics
Abstract
Graphene, with its unique band structure, mechanical stability, and high charge mobility, holds great promise for next-generation electronics. Nevertheless, its zero bandgap challenges the control of current flow through electrical gating, consequently limiting its practical applications. Recent research indicates that atomic oxygen can oxidize epitaxial graphene in a vacuum without causing unwanted damage. In this study, we have investigated the effects of chemisorbed atomic oxygen on the electronic properties of epitaxial graphene using scanning tunneling microscopy (STM). Our findings reveal that oxygen atoms effectively modify the electronic states of graphene, resulting in a bandgap at its Dirac point. Furthermore, we demonstrate that it is possible to selectively induce desorption or hopping of oxygen atoms with atomic precision by applying appropriate bias sweeps with an STM tip. These results suggest the potential for atomic-scale tailoring of graphene oxide, enabling the development of graphene-based atomic-scale electronic devices.
URI
https://oasis.postech.ac.kr/handle/2014.oak/117991
DOI
10.1063/5.0158595
ISSN
0003-6951
Article Type
Article
Citation
Applied Physics Letters, vol. 123, no. 2, 2023-07
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse