Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

Revealing inverted chirality of hidden domain wall states in multiband systems without topological transition SCIE SCOPUS

Title
Revealing inverted chirality of hidden domain wall states in multiband systems without topological transition
Authors
JEONG, SEUNG GYOHan, Sang-HoonKIM, TAE HWANCheon, Sangmo
Date Issued
2023-09
Publisher
NATURE PUBLISHING GROUP
Abstract
AbstractChirality, a fundamental concept from biological molecules to advanced materials, is prevalent in nature. Yet, its intricate behavior in specific topological systems remains poorly understood. Here, we investigate the emergence of hidden chiral domain wall states using a double-chain Su-Schrieffer-Heeger model with interchain coupling specifically designed to break chiral symmetry. Our phase diagram reveals single-gap and double-gap phases based on electronic structure, where transitions occur without topological phase changes. In the single-gap phase, we reproduce chiral domain wall states, akin to chiral solitons in the double-chain model, where chirality is encoded in the spectrum and topological charge pumping. In the double-gap phase, we identify hidden chiral domain wall states exhibiting opposite chirality to the domain wall states in the single-gap phase, where the opposite chirality is confirmed through spectrum inversion and charge pumping as the corresponding domain wall slowly moves. By engineering gap structures, we demonstrate control over hidden chiral domain states. Our findings open avenues to investigate novel topological systems with broken chiral symmetry and potential applications in diverse systems.
URI
https://oasis.postech.ac.kr/handle/2014.oak/118934
DOI
10.1038/s42005-023-01367-x
ISSN
2399-3650
Article Type
Article
Citation
Communications Physics, vol. 6, no. 1, 2023-09
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse