Open Access System for Information Sharing

Login Library

 

Article
Cited 2 time in webofscience Cited 3 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHan, Jong E.-
dc.contributor.authorAron, Camille-
dc.contributor.authorChen, Xi-
dc.contributor.authorMansaray, Ishiaka-
dc.contributor.authorHan, Jae-Ho-
dc.contributor.authorKim, Ki-Seok-
dc.contributor.authorRandle, Michael-
dc.contributor.authorBird, Jonathan P.-
dc.date.accessioned2024-01-22T09:20:07Z-
dc.date.available2024-01-22T09:20:07Z-
dc.date.created2023-12-11-
dc.date.issued2023-05-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/119781-
dc.description.abstractThe significant discrepancy observed between the predicted and experimental switching fields in correlated insulators under a DC electric field far-from-equilibrium necessitates a reevaluation of current microscopic understanding. Here we show that an electron avalanche can occur in the bulk limit of such insulators at arbitrarily small electric field by introducing a generic model of electrons coupled to an inelastic medium of phonons. The quantum avalanche arises by the generation of a ladder of in-gap states, created by a multi-phonon emission process. Hot-phonons in the avalanche trigger a premature and partial collapse of the correlated gap. The phonon spectrum dictates the existence of two-stage versus single-stage switching events which we associate with charge-density-wave and Mott resistive phase transitions, respectively. The behavior of electron and phonon temperatures, as well as the temperature dependence of the threshold fields, demonstrates how a crossover between the thermal and quantum switching scenarios emerges within a unified framework of the quantum avalanche.-
dc.languageEnglish-
dc.publisherNature Research-
dc.relation.isPartOfNature Communications-
dc.titleCorrelated insulator collapse due to quantum avalanche via in-gap ladder states-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-023-38557-8-
dc.type.rimsART-
dc.identifier.bibliographicCitationNature Communications, v.14, no.1-
dc.identifier.wosid001024186000021-
dc.citation.number1-
dc.citation.titleNature Communications-
dc.citation.volume14-
dc.contributor.affiliatedAuthorKim, Ki-Seok-
dc.identifier.scopusid2-s2.0-85159849278-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHARGE-DENSITY WAVES-
dc.subject.keywordPlusMEAN-FIELD THEORY-
dc.subject.keywordPlusELECTRIC-FIELD-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusTAS3-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse