Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila SCIE SCOPUS

Title
Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila
Authors
Lee, DaewonYoon, EunjuHam, Su JinLee, KunwooJang, HansaemWoo, DaihnLee, Da HyunKim, SehyeonChoi, SekyuChung, Jongkyeong
Date Issued
2024-01
Publisher
Nature Publishing Group
Abstract
AbstractDiabetic sensory neuropathy (DSN) is one of the most common complications of type 2 diabetes (T2D), however the molecular mechanistic association between T2D and DSN remains elusive. Here we identify ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinase highly expressed in neurons, as a key molecule underlying T2D and DSN. Genetic ablation of UCHL1 leads to neuronal insulin resistance and T2D-related symptoms in Drosophila. Furthermore, loss of UCHL1 induces DSN-like phenotypes, including numbness to external noxious stimuli and axonal degeneration of sensory neurons in flies’ legs. Conversely, UCHL1 overexpression improves DSN-like defects of T2D model flies. UCHL1 governs insulin signaling by deubiquitinating insulin receptor substrate 1 (IRS1) and antagonizes an E3 ligase of IRS1, Cullin 1 (CUL1). Consistent with these results, genetic and pharmacological suppression of CUL1 activity rescues T2D- and DSN-associated phenotypes. Therefore, our findings suggest a complete set of genetic factors explaining T2D and DSN, together with potential remedies for the diseases.
URI
https://oasis.postech.ac.kr/handle/2014.oak/119979
DOI
10.1038/s41467-024-44747-9
Article Type
Article
Citation
Nature Communications, vol. 15, no. 1, 2024-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse