Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, Selim-
dc.contributor.authorKang, Hyungu-
dc.contributor.authorKim, Minu-
dc.contributor.authorKim, Ki Jong-
dc.contributor.authorLee, Jae Min-
dc.contributor.authorCheong, Hae-Won-
dc.contributor.authorKim, Hyoung Seop-
dc.contributor.authorLee, Sunghak-
dc.date.accessioned2024-02-26T05:51:08Z-
dc.date.available2024-02-26T05:51:08Z-
dc.date.created2023-12-11-
dc.date.issued2023-10-
dc.identifier.issn0921-5093-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/120392-
dc.description.abstractThis study suggests that stacks of thin aluminum (Al) sheets with fine rectangular or triangular grooves are effective materials for energy absorption. The energy-absorbing performance of these materials was evaluated using a modified split Hopkinson pressure bar (SHPB). Two important energy-absorbing parameters, impact momentum (I) and maximum impact acceleration (amax), were measured from stress-time (sigma-t) curves. These parameters were found to vary with groove shape, groove cavity fraction, and specimen thickness. Both I and amax showed a continuous decrease as the specimen thickness increased from 6 to 18 mm or as the groove cavity fraction increased from 29-30% to 38-39%. Analyzing the sigma-t curve shapes revealed that the triangular grooved specimens exhibited broad-peak shaped curves, resulting in a greater reduction in I compared to the broadened plateau shape observed in the rectangular grooved specimens. Taking into account both I and amax, the overall energy-absorbing performance of the triangular grooved specimens was better than that of the rectangular grooved specimens. Notably, in the triangular grooved specimens with a high cavity fraction, the triangular embossing intruded into the groove cavities, resembling a 'zipper' mechanism, further enhancing the effectiveness of energy absorption. This study presents a promising approach for developing various grooved Al sheet stacks that exhibit reduced amax and I by strategically exploring suitable groove shapes, cavity fractions, and stack thicknesses, especially in dynamically compressed artillery environments.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.titleEnergy-absorption analyses of grooved Al-sheet stacks using modified split Hopkinson pressure bar-
dc.typeArticle-
dc.identifier.doi10.1016/j.msea.2023.145721-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.886-
dc.identifier.wosid001083128600001-
dc.citation.titleMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.citation.volume886-
dc.contributor.affiliatedAuthorKim, Selim-
dc.contributor.affiliatedAuthorKim, Hyoung Seop-
dc.contributor.affiliatedAuthorLee, Sunghak-
dc.identifier.scopusid2-s2.0-85171422015-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusCELL ALUMINUM FOAM-
dc.subject.keywordPlusSTRAIN-RATE-
dc.subject.keywordPlusCOMPRESSIVE RESPONSE-
dc.subject.keywordPlusMETAL-FOAM-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorGrooved Al -Sheet stacks-
dc.subject.keywordAuthorEnergy -absorbing performance-
dc.subject.keywordAuthorSplit Hopkinson pressure bar (SHPB)-
dc.subject.keywordAuthorImpact momentum-
dc.subject.keywordAuthorMaximum impact acceleration-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse