Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 0 time in scopus
Metadata Downloads

Accessible Ni‐Fe‐Oxalate Framework for Electrochemical Urea Oxidation with Radically Enhanced Kinetics SCIE SCOPUS

Title
Accessible Ni‐Fe‐Oxalate Framework for Electrochemical Urea Oxidation with Radically Enhanced Kinetics
Authors
김지선Kim, Min‐CheolHan, Sang SooCHO, KANGWOO
Date Issued
2024-01
Publisher
John Wiley & Sons Ltd.
Abstract
Urea oxidation reaction (UOR) has been utilized to substitute the oxygen evolution reaction (OER), to escalate the energy conversion efficiency in electrochemical hydrogen generation processes with denitrification of widespread urea in wastewater. This study reports breakthroughs in Ni-based UOR electrocatalysts, particularly with NiFe oxalate (O-NFF), derived from Ni3Fe alloy foam with prismatic nanostructures and elevated surface area. The O-NFF achieves cutting-edge performances, representing 500 mA cm−2 of current density at 1.47 V RHE and exceptionally low Tafel slope of 12.1 mV dec−1 (in 1 m KOH with 0.33 m urea). X-ray photoelectron/absorption spectroscopy (XPS/XAS) coupled with density functional theory calculations unveil that oxalate ligands induce charge deficient Ni center, promoting stable urea-O adsorption. Furthermore, Fe dopants enhance oxalate-O charge density and H-bond strength, facilitating C-N cleavage for N2 and NO2− formation. The extraordinary UOR kinetics by the tandem effects of oxalate and Fe prevent Ni over-oxidation, corroborated by operando XAS, minimizing OER interference. It agrees with an adaptive reconstruction to Fe-doped β-NiOOH on top surface in extended urea electrolysis with marginal loss in UOR kinetics. This findings shed light to bimetal-organic-framework as (pre)catalysts to improve industrial electrolytic H2 production.
URI
https://oasis.postech.ac.kr/handle/2014.oak/120881
DOI
10.1002/adfm.202315625
ISSN
1616-301X
Article Type
Article
Citation
Advanced Functional Materials, 2024-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조강우CHO, KANGWOO
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse