Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorBEICHEN LI-
dc.contributor.authorOh, Tae-Hyun-
dc.contributor.authorWojciech Matusik-
dc.contributor.authorDeng, Bolei-
dc.contributor.authorShou, Wan-
dc.contributor.authorHu, Yuanming-
dc.contributor.authorLuo, Yiyue-
dc.contributor.authorShi, Liang-
dc.contributor.authorMatusik, Wojciech-
dc.date.accessioned2024-03-06T01:20:07Z-
dc.date.available2024-03-06T01:20:07Z-
dc.date.created2024-03-04-
dc.date.issued2024-02-
dc.identifier.issn2375-2548-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/121382-
dc.description.abstractThe conflict between stiffness and toughness is a fundamental problem in engineering materials design. However, the systematic discovery of microstructured composites with optimal stiffness-toughness trade-offs has never been demonstrated, hindered by the discrepancies between simulation and reality and the lack of data-efficient exploration of the entire Pareto front. We introduce a generalizable pipeline that integrates physical experiments, numerical simulations, and artificial neural networks to address both challenges. Without any prescribed expert knowledge of material design, our approach implements a nested-loop proposal-validation workflow to bridge the simulation-to-reality gap and find microstructured composites that are stiff and tough with high sample efficiency. Further analysis of Pareto-optimal designs allows us to automatically identify existing toughness enhancement mechanisms, which were previously found through trial and error or biomimicry. On a broader scale, our method provides a blueprint for computational design in various research areas beyond solid mechanics, such as polymer chemistry, fluid dynamics, meteorology, and robotics. © 2024 American Association for the Advancement of Science. All rights reserved.-
dc.languageEnglish-
dc.publisherAmerican Association for the Advancement of Science-
dc.relation.isPartOfScience Advances-
dc.titleComputational discovery of microstructured composites with optimal stiffness-toughness trade-offs-
dc.typeArticle-
dc.identifier.doi10.1126/sciadv.adk4284-
dc.type.rimsART-
dc.identifier.bibliographicCitationScience Advances, v.10, no.5-
dc.identifier.wosid001186784700016-
dc.citation.number5-
dc.citation.titleScience Advances-
dc.citation.volume10-
dc.contributor.affiliatedAuthorOh, Tae-Hyun-
dc.identifier.scopusid2-s2.0-85183812609-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusTOPOLOGY OPTIMIZATION-
dc.subject.keywordPlusVARIATIONAL APPROACH-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusULTRALIGHT-
dc.subject.keywordPlusALGORITHM-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse