Open Access System for Information Sharing

Login Library

 

Article
Cited 50 time in webofscience Cited 53 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorJung, SC-
dc.contributor.authorKang, MH-
dc.date.accessioned2015-06-25T03:07:20Z-
dc.date.available2015-06-25T03:07:20Z-
dc.date.created2010-11-22-
dc.date.issued2010-03-
dc.identifier.issn1098-0121-
dc.identifier.other2015-OAK-0000021785en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12239-
dc.description.abstractMolecular and dissociative adsorption of a single water molecule on the Fe(100) surface has been studied by using density-functional theory calculations. We found that there exists a locally stable molecular adsorption state with an adsorption energy of 0.39 eV, where the H(2)O molecule adsorbs on top of a surface Fe atom in a flat-lying molecular configuration. This molecular configuration is found to well reproduce the water-induced vibrational frequencies measured in a low-temperature electron-energy-loss spectroscopy (EELS) study. The H(2)O molecular state is subject to a dissociation into H+OH species with an activation barrier of 0.35 eV. A further dissociation of the OH group into H+O species requires a higher activation energy of 0.79 eV. The prediction of the H(2)O molecular precursor and the energy diagram for its dissociation is in good accordance with the adsorption picture which was suggested in a previous EELS study but has been incompatible with a previous density-functional study predicting a barrierless H+OH dissociation of water molecule.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.relation.isPartOfPHYSICAL REVIEW B-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleAdsorption of a water molecule on Fe(100): Density-functional calculations-
dc.typeArticle-
dc.contributor.college물리학과en_US
dc.identifier.doi10.1103/PHYSREVB.81.115460-
dc.author.googleJung, Sung Chulen_US
dc.author.googleKang, Myung Hoen_US
dc.relation.volume81en_US
dc.relation.issue11en_US
dc.contributor.id10105469en_US
dc.relation.journalPHYSICAL REVIEW Ben_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICAL REVIEW B, v.81, no.11-
dc.identifier.wosid000276248800173-
dc.date.tcdate2019-01-01-
dc.citation.number11-
dc.citation.titlePHYSICAL REVIEW B-
dc.citation.volume81-
dc.contributor.affiliatedAuthorKang, MH-
dc.identifier.scopusid2-s2.0-77955061871-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc28-
dc.description.scptc27*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusAUGMENTED-WAVE METHOD-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusHYDROGEN-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse