Open Access System for Information Sharing

Login Library

 

Article
Cited 124 time in webofscience Cited 133 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorHaney, PM-
dc.contributor.authorLee, HW-
dc.contributor.authorLee, KJ-
dc.contributor.authorManchon, A-
dc.contributor.authorStiles, MD-
dc.date.accessioned2015-06-25T03:09:10Z-
dc.date.available2015-06-25T03:09:10Z-
dc.date.created2014-03-04-
dc.date.issued2013-12-19-
dc.identifier.issn1098-0121-
dc.identifier.other2015-OAK-0000029132en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12288-
dc.description.abstractIn bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the "fieldlike" torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.relation.isPartOfPHYSICAL REVIEW B-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleCurrent-induced torques and interfacial spin-orbit coupling-
dc.typeArticle-
dc.contributor.college물리학과en_US
dc.identifier.doi10.1103/PHYSREVB.88.214417-
dc.author.googleHaney, PMen_US
dc.author.googleLee, HWen_US
dc.author.googleStiles, MDen_US
dc.author.googleManchon, Aen_US
dc.author.googleLee, KJen_US
dc.relation.volume88en_US
dc.relation.issue21en_US
dc.relation.startpage214417en_US
dc.contributor.id10084423en_US
dc.relation.journalPHYSICAL REVIEW Ben_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICAL REVIEW B, v.88, no.21, pp.214417-
dc.identifier.wosid000328687100004-
dc.date.tcdate2019-01-01-
dc.citation.number21-
dc.citation.startPage214417-
dc.citation.titlePHYSICAL REVIEW B-
dc.citation.volume88-
dc.contributor.affiliatedAuthorLee, HW-
dc.identifier.scopusid2-s2.0-84891886281-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc67-
dc.description.scptc84*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusDOMAIN-WALLS-
dc.subject.keywordPlusEFFECTIVE-FIELD-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusCO/PT(111)-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusVECTOR-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse