Open Access System for Information Sharing

Login Library

 

Article
Cited 410 time in webofscience Cited 409 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorHaney, PM-
dc.contributor.authorLee, HW-
dc.contributor.authorLee, KJ-
dc.contributor.authorManchon, A-
dc.contributor.authorStiles, MD-
dc.date.accessioned2015-06-25T03:09:15Z-
dc.date.available2015-06-25T03:09:15Z-
dc.date.created2014-03-24-
dc.date.issued2013-05-07-
dc.identifier.issn1098-0121-
dc.identifier.other2015-OAK-0000029117en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12290-
dc.description.abstractIn bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.relation.isPartOfPHYSICAL REVIEW B-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleCurrent induced torques and interfacial spin-orbit coupling: Semiclassical modeling-
dc.typeArticle-
dc.contributor.college물리학과en_US
dc.identifier.doi10.1103/PHYSREVB.87.174411-
dc.author.googleHaney, PMen_US
dc.author.googleLee, HWen_US
dc.author.googleStiles, MDen_US
dc.author.googleManchon, Aen_US
dc.author.googleLee, KJen_US
dc.relation.volume87en_US
dc.relation.issue17en_US
dc.relation.startpage174411en_US
dc.contributor.id10084423en_US
dc.relation.journalPHYSICAL REVIEW Ben_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIEen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICAL REVIEW B, v.87, no.17, pp.174411-
dc.identifier.wosid000318653300003-
dc.date.tcdate2019-01-01-
dc.citation.number17-
dc.citation.startPage174411-
dc.citation.titlePHYSICAL REVIEW B-
dc.citation.volume87-
dc.contributor.affiliatedAuthorLee, HW-
dc.identifier.scopusid2-s2.0-84877903325-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc208-
dc.description.scptc179*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusDOMAIN-WALL MOTION-
dc.subject.keywordPlusMAGNETIZATION DYNAMICS-
dc.subject.keywordPlusMAGNETORESISTANCE-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse