Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPark, Jun Hui-
dc.contributor.authorKim, Jung Nam-
dc.contributor.authorLee, Seonhaeng-
dc.contributor.authorKim, Gang-Jun-
dc.contributor.authorLee, Namhyun-
dc.contributor.authorBaek, Rock-Hyun-
dc.contributor.authorKim, Dae Hwan-
dc.contributor.authorKim, Changhyun-
dc.contributor.authorKang, Myounggon-
dc.contributor.authorKim, Yoon-
dc.date.accessioned2024-05-16T01:20:52Z-
dc.date.available2024-05-16T01:20:52Z-
dc.date.created2024-03-29-
dc.date.issued2024-01-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/123458-
dc.description.abstractAccurate current-voltage (I-V) modeling based on the Berkeley short-channel insulated-gate field-effect transistor model (BSIM) is pivotal for integrated circuit simulation. However, the current BSIM model does not support a buried-channel-array transistor (BCAT), which is the structure of the state-of-the-art commercial dynamic random access memory (DRAM) cell transistor. In this work, we propose an intelligent I-V modeling technique that combines genetic algorithm (GA) and deep learning (DL). This hybrid technique facilitates both optimization of BSIM parameter and accurate I-V modeling, even for devices not originally supported by BSIM. Additionally, we extended application of the DL to model one of the principal degradation mechanisms of transistor, the hot-carrier degradation (HCD). The successful modeling results of I-V characteristic and device degradation demonstrated that devices not supported by BSIM can be accurately modeled for integrated circuit simulations.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.relation.isPartOfIEEE Access-
dc.titleCurrent-Voltage Modeling of DRAM Cell Transistor Using Genetic Algorithm and Deep Learning-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2024.3357241-
dc.type.rimsART-
dc.identifier.bibliographicCitationIEEE Access, v.12, pp.23881 - 23886-
dc.identifier.wosid001164089600001-
dc.citation.endPage23886-
dc.citation.startPage23881-
dc.citation.titleIEEE Access-
dc.citation.volume12-
dc.contributor.affiliatedAuthorBaek, Rock-Hyun-
dc.contributor.affiliatedAuthorKim, Changhyun-
dc.identifier.scopusid2-s2.0-85184016802-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordAuthorBCAT-
dc.subject.keywordAuthorBSIM-CMG-
dc.subject.keywordAuthorcompact modeling-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorDRAM cell transistor-
dc.subject.keywordAuthorgenetic algorithm-
dc.subject.keywordAuthorHCD-
dc.subject.keywordAuthorI-V modeling-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

백록현BAEK, ROCK HYUN
Dept of Electrical Enginrg
Read more

Views & Downloads

Browse