Open Access System for Information Sharing

Login Library

 

Article
Cited 400 time in webofscience Cited 430 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorChang-Hwan Choi-
dc.contributor.authorUmberto Ulmanella-
dc.contributor.authorKim, J-
dc.contributor.authorChih-Ming Ho-
dc.contributor.authorChang-Jin Kim-
dc.date.accessioned2015-06-25T03:19:26Z-
dc.date.available2015-06-25T03:19:26Z-
dc.date.created2012-04-22-
dc.date.issued2006-08-
dc.identifier.issn1070-6631-
dc.identifier.other2015-OAK-0000017756en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12542-
dc.description.abstractEnabled by a technology to fabricate well-defined nanogrates over a large area (2x2 cm(2)), we report the effect of such a surface, in both hydrophilic and hydrophobic conditions, on liquid slip and the corresponding friction reduction in microchannels. The grates are designed to be dense (similar to 230 nm pitch) but deep (similar to 500 nm) in order to sustain a large amount of air in the troughs when the grates are hydrophobic, even under pressurized liquid flow conditions (e.g., more than 1 bar). A noticeable slip (i.e., slip length of 100-200 nm, corresponding to 20%-30% reduction of pressure drop in a similar to 3 mu m high channel) is observed for water flowing parallel over the hydrophobic nanogrates; this is believed to be an "effective" slip generated by the nanostrips of air in the grate troughs under the liquid. The effective slip is clearer and larger in flows parallel to the nanograting patterns than in transverse, suggesting that the nanograted superhydrophobic surfaces would not only reduce friction in liquid flows under pressure but also enable directional control of the slip. This paper is the first to use nanoscale grating patterns and to measure their effect on liquid flows in microchannels. (c) 2006 American Institute of Physics.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAIP-
dc.relation.isPartOfPHYSICS OF FLUIDS-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleEffective slip and friction reduction in nanograted superhydrophobic microchannels-
dc.typeArticle-
dc.contributor.college기계공학과en_US
dc.identifier.doi10.1063/1.2337669-
dc.author.googleChoi, CHen_US
dc.author.googleUlmanella, Uen_US
dc.author.googleKim, CJen_US
dc.author.googleHo, CMen_US
dc.author.googleKim, Jen_US
dc.relation.volume18en_US
dc.relation.issue8en_US
dc.relation.startpage87105en_US
dc.relation.lastpage87105en_US
dc.contributor.id10191163en_US
dc.relation.journalPHYSICS OF FLUIDSen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICS OF FLUIDS, v.18, no.8, pp.87105 - 87105-
dc.identifier.wosid000240237400042-
dc.date.tcdate2019-01-01-
dc.citation.endPage87105-
dc.citation.number8-
dc.citation.startPage87105-
dc.citation.titlePHYSICS OF FLUIDS-
dc.citation.volume18-
dc.contributor.affiliatedAuthorKim, J-
dc.identifier.scopusid2-s2.0-33748284847-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc256-
dc.description.scptc292*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusFLUID-SOLID INTERFACE-
dc.subject.keywordPlusWATER-REPELLENT WALL-
dc.subject.keywordPlusBOUNDARY-CONDITION-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusDRAG REDUCTION-
dc.subject.keywordPlusHYDROPHOBIC MICROCHANNELS-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusLIQUID-
dc.subject.keywordPlusRESISTANCE-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김준원KIM, JOON WON
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse