Open Access System for Information Sharing

Login Library

 

Article
Cited 34 time in webofscience Cited 38 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorYou, DH-
dc.contributor.authorMoin, P-
dc.date.accessioned2015-06-25T03:19:37Z-
dc.date.available2015-06-25T03:19:37Z-
dc.date.created2012-02-08-
dc.date.issued2009-04-
dc.identifier.issn1070-6631-
dc.identifier.other2015-OAK-0000024659en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12547-
dc.description.abstractThe dynamic global-coefficient subgrid-scale eddy-viscosity model by You and Moin [Phys. Fluids 19, 065110 (2007)] is generalized for large-eddy simulation of turbulent flow with scalar transport. The model coefficient for subgrid-scale scalar flux which is constant in space but varies in time is dynamically determined based on the "global conservation" of the transport equation for scalar variance. Large-eddy simulations of turbulent flow with passive scalar transport through a channel and over a backward-facing step show that the present model has a similar predictive capability as the dynamic Smagorinsky model. The present dynamic model is especially suitable for large-eddy simulation of turbulent flow with scalar transport in complex geometries since it does not require any spatial and temporal averaging or clipping of the model coefficient for numerical stabilization and requires only a single-level test filter. The present model is not more complicated in implementation and not more expensive in terms of computational cost than the dynamic Smagorinsky model.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAIP-
dc.relation.isPartOfPHYSICS OF FLUIDS-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleA dynamic global-coefficient subgrid-scale model for large-eddy simulation of turbulent scalar transport in complex geometries-
dc.typeArticle-
dc.contributor.college기계공학과en_US
dc.identifier.doi10.1063/1.3115068-
dc.author.googleYou, DHen_US
dc.author.googleMoin, Pen_US
dc.relation.volume21en_US
dc.relation.issue4en_US
dc.relation.startpage45109en_US
dc.contributor.id10201266en_US
dc.relation.journalPHYSICS OF FLUIDSen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICS OF FLUIDS, v.21, no.4, pp.45109-
dc.identifier.wosid000266885400037-
dc.date.tcdate2019-01-01-
dc.citation.number4-
dc.citation.startPage45109-
dc.citation.titlePHYSICS OF FLUIDS-
dc.citation.volume21-
dc.contributor.affiliatedAuthorYou, DH-
dc.identifier.scopusid2-s2.0-65549117500-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc22-
dc.description.scptc27*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusCHANNEL FLOW-
dc.subject.keywordPlusSTATISTICS-
dc.subject.keywordPlusFLUX-
dc.subject.keywordAuthorchannel flow-
dc.subject.keywordAuthorexternal flows-
dc.subject.keywordAuthorflow simulation-
dc.subject.keywordAuthornumerical analysis-
dc.subject.keywordAuthorturbulence-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

유동현YOU, DONGHYUN
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse