Open Access System for Information Sharing

Login Library

 

Article
Cited 37 time in webofscience Cited 37 time in scopus
Metadata Downloads

Atomic and electronic structure of an alloyed topological insulator, Bi1.5Sb0.5Te1.7Se1.3 SCIE SCOPUS

Title
Atomic and electronic structure of an alloyed topological insulator, Bi1.5Sb0.5Te1.7Se1.3
Authors
Ko, WJeon, IKim, HWKwon, HKahng, SJPark, JKim, JSHwang, SWSuh, H
Date Issued
2013-09-13
Publisher
NATURE PUBLISHING GROUP
Abstract
Bi2-xSbxTe3-ySey has been argued to exhibit both topological surface states and insulating bulk states, but has not yet been studied with local probes on the atomic scale. Here we report on the atomic and electronic structures of Bi1.5Sb0.5Te1.7Se1.3 studied using scanning tunnelling microscopy (STM) and spectroscopy (STS). Although there is significant surface disorder due to alloying of constituent atoms, cleaved surfaces of the crystals present a well-ordered hexagonal lattice with 10 A high quintuple layer steps. STS results reflect the band structure and indicate that the surface state and Fermi energy are both located inside the energy gap. In particular, quasi-particle interference patterns from electron scattering demonstrate that the surface states possess linear dispersion and chirality from spin texture, thus verifying its topological nature. This finding demonstrates that alloying is a promising route to achieve full suppression of bulk conduction in topological insulators whilst keeping the topological surface state intact.
URI
https://oasis.postech.ac.kr/handle/2014.oak/12888
DOI
10.1038/SREP02656
ISSN
2045-2322
Article Type
Article
Citation
SCIENTIFIC REPORTS, vol. 3, 2013-09-13
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse