Open Access System for Information Sharing

Login Library

 

Article
Cited 38 time in webofscience Cited 40 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorYu, HK-
dc.contributor.authorLee, JL-
dc.date.accessioned2015-06-25T03:34:04Z-
dc.date.available2015-06-25T03:34:04Z-
dc.date.created2017-04-11-
dc.date.issued2014-10-10-
dc.identifier.issn2045-2322-
dc.identifier.other2015-OAK-0000031319en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12900-
dc.description.abstractWe report the growth mechanism of metal oxide nanostructures synthesized by electron beam evaporation. The condensed electron beam can easily decompose metal oxide sources that have a high melting point, thereby creating a self-catalytic metal nanodot for the vapor-liquid-solid process. The metal oxide nanostructures can be grown at a temperature just above the melting point of the self-catalyst by dissolving oxygen. The morphology of nanostructures, such as density and uniformity, strongly depends on the surface energy and surface migration energy of the substrate. The density of the self-catalytic metal nanodots increased with decreasing surface energies of the substrate due to the perfect wetting phenomenon of the catalytic materials on the high surface energy substrate. However, the surfaces with extremely low surface energy had difficulty producing the high density of self-catalyst nanodot, due to positive line tension, which increases the contact angle to >180 degrees. Moreover, substrates with low surface migration energy, such as single layer graphene, make nanodots agglomerate to produce a less-uniform distribution compared to those produced on multi-layer graphene with high surface migration energy.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleGrowth mechanism of metal-oxide nanowires synthesized by electron beam evaporation: A self-catalytic vapor-liquid-solid process-
dc.typeArticle-
dc.contributor.college신소재공학과en_US
dc.identifier.doi10.1038/SREP06589-
dc.author.googleYu, HKen_US
dc.author.googleLee, JLen_US
dc.relation.volume4en_US
dc.contributor.id10105416en_US
dc.relation.journalSCIENTIFIC REPORTSen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIEen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.4, pp.6589-
dc.identifier.wosid000343082700005-
dc.date.tcdate2019-01-01-
dc.citation.startPage6589-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume4-
dc.contributor.affiliatedAuthorLee, JL-
dc.identifier.scopusid2-s2.0-84940764025-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc13-
dc.description.scptc14*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusSURFACE FREE-ENERGY-
dc.subject.keywordPlusSILICON NANOWIRES-
dc.subject.keywordPlusINTERFACIAL ENERGIES-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusINDIUM-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusLINE-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusDEPOSITION-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이종람LEE, JONG LAM
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse