Open Access System for Information Sharing

Login Library

 

Article
Cited 31 time in webofscience Cited 35 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorvan Ruymbeke, E-
dc.contributor.authorLee, H-
dc.contributor.authorChang, T-
dc.contributor.authorNikopoulou, A-
dc.contributor.authorHadjichristidis, N-
dc.contributor.authorSnijkers, F-
dc.contributor.authorVlassopoulos, D-
dc.date.accessioned2015-06-25T03:36:17Z-
dc.date.available2015-06-25T03:36:17Z-
dc.date.created2015-02-08-
dc.date.issued2014-07-
dc.identifier.issn1744-683X-
dc.identifier.other2015-OAK-0000031756en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12951-
dc.description.abstractAn emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherRSC-
dc.relation.isPartOfSOFT MATTER-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleMolecular rheology of branched polymers: decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling-
dc.typeArticle-
dc.contributor.college첨단재료과학부en_US
dc.identifier.doi10.1039/C4SM00105B-
dc.author.googlevan Ruymbeke, Een_US
dc.author.googleLee, Hen_US
dc.author.googleVlassopoulos, Den_US
dc.author.googleSnijkers, Fen_US
dc.author.googleHadjichristidis, Nen_US
dc.author.googleNikopoulou, Aen_US
dc.author.googleChang, Ten_US
dc.relation.volume10en_US
dc.relation.issue27en_US
dc.relation.startpage4762en_US
dc.relation.lastpage4777en_US
dc.contributor.id10052407en_US
dc.relation.journalSOFT MATTERen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationSOFT MATTER, v.10, no.27, pp.4762 - 4777-
dc.identifier.wosid000338123700001-
dc.date.tcdate2019-01-01-
dc.citation.endPage4777-
dc.citation.number27-
dc.citation.startPage4762-
dc.citation.titleSOFT MATTER-
dc.citation.volume10-
dc.contributor.affiliatedAuthorChang, T-
dc.identifier.scopusid2-s2.0-84902668563-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc18-
dc.description.scptc17*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusGRADIENT INTERACTION CHROMATOGRAPHY-
dc.subject.keywordPlusLINEAR VISCOELASTIC PROPERTIES-
dc.subject.keywordPlusASYMMETRIC STAR POLYMERS-
dc.subject.keywordPlusMONTE-CARLO-SIMULATION-
dc.subject.keywordPlusH-SHAPED POLYSTYRENES-
dc.subject.keywordPlusCAYLEY-TREE POLYMERS-
dc.subject.keywordPlusSLIP-LINK MODEL-
dc.subject.keywordPlusWEIGHT DISTRIBUTION-
dc.subject.keywordPlusENTANGLED POLYMERS-
dc.subject.keywordPlusTUBE DILATION-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalResearchAreaPolymer Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

장태현CHANG, TAIHYUN
Div of Advanced Materials Science
Read more

Views & Downloads

Browse