Open Access System for Information Sharing

Login Library

 

Article
Cited 5 time in webofscience Cited 4 time in scopus
Metadata Downloads

Simultaneous imaging of the topography and electrochemical activity of a 2D carbon nanotube network using a dual functional L-shaped nanoprobe SCIE SCOPUS

Title
Simultaneous imaging of the topography and electrochemical activity of a 2D carbon nanotube network using a dual functional L-shaped nanoprobe
Authors
Lee, ESung, JAn, TShin, HNam, HGLim, G
Date Issued
2015-01
Publisher
ROYAL SOC CHEMISTRY
Abstract
The application of nanomaterials for biosensors and fuel cells is becoming more common, but it requires an understanding of the relationship between the structure and electrochemical characteristics of the materials at the nanoscale. Herein, we report the development of scanning electrochemical microscopy-atomic force microscopy (SECM-AFM) nanoprobes for collecting spatially resolved data regarding the electrochemical activity of nanomaterials such as carbon nanotube (CNT) networks. The fabrication of the nanoprobe begins with the integration of a CNT-bundle wire into a conventional AFM probe followed by the deposition of an insulating layer and cutting of the probe end. In addition, a protrusive insulating tip is integrated at the end of the insulated CNT-bundle wire to maintain a constant distance between the nanoelectrode and the substrate; this yields an L-shaped nanoprobe. The resulting nanoprobes produced well-fitted maps of faradaic current data with less than 300 nm spatial resolution and topographical images of CNT networks owing to the small effective distance (of the order of tens of nanometers) between the electrode and the substrate. Electrochemical imaging using the L-shaped nanoprobe revealed that the electrochemical activity of the CNT network is not homogeneous and provided further understanding of the relationship between the topography and electrochemical characteristics of CNT networks.
Keywords
ATOMIC-FORCE MICROSCOPY; HETEROGENEOUS ELECTRON-TRANSFER; ENZYME-ACTIVITY; INTEGRATED AFM; SECM; PROBES; FABRICATION; TRANSPORT; SURFACES; MODE
URI
https://oasis.postech.ac.kr/handle/2014.oak/13205
DOI
10.1039/C4AN02139H
ISSN
0003-2654
Article Type
Article
Citation
ANALYST, vol. 140, no. 9, page. 3150 - 3156, 2015-01
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse