Open Access System for Information Sharing

Login Library

 

Article
Cited 6 time in webofscience Cited 4 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorHyun, DC-
dc.contributor.authorKim, B-
dc.contributor.authorPark, C-
dc.contributor.authorJeong, U-
dc.date.accessioned2015-12-15T02:35:58Z-
dc.date.available2015-12-15T02:35:58Z-
dc.date.created2015-10-16-
dc.date.issued2012-01-
dc.identifier.issn1744-683X-
dc.identifier.other2015-OAK-0000033668-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/13389-
dc.description.abstractWe have developed a novel method to systematically investigate molecular release. A series of processes including buckling of thin polymer films, deposition of solute molecules, and transfer to other substrates enabled the fabrication of uniform and submicron-sized tunnel-like molecular reservoirs. From the release profiles, diffusivity and solubility of the solute molecules in the polymeric barriers were calculated. As a model study, we investigated the release of rhodamine B and FITC-labeled dextran polymer representing small molecules and large molecules. The degree of hydration of the polymer barrier was controlled by changing the chain end group of polystyrene (PS) by tert-butyl (PS-t-Bu) and nitrilotriacetic acid (PS-NTA). The NTA-terminated PS thin films showed 13% water uptake regardless of the film thickness while the bare PS and PS-t-Bu barriers exhibited 4% and 6% uptake. This difference in hydration affected release behavior of the molecules. The release of small molecules was dependent on the barrier polymers, while the release of large molecules was completely blocked due to the restricted chain movement of the barrier polymers. Surface treatment by CF4 plasma on the PS-NTA barriers considerably retarded the release of small molecules and blocked the release of large molecules. The release behavior could be well explained by the diffusivity and solubility calculated from the release profile.-
dc.description.statementofresponsibilityopen-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.relation.isPartOfSoft Matter-
dc.subjectDRUG-DELIVERY SYSTEMS-
dc.subjectBUCKLING-BASED METROLOGY-
dc.subjectPOLYMERIC THIN-FILMS-
dc.subjectPROGESTIN PERMEATION-
dc.subjectAMORPHOUS POLYMERS-
dc.subjectSMALL PENETRANTS-
dc.subjectPOROUS SILICON-
dc.subjectDIFFUSION-
dc.subjectMEMBRANES-
dc.subjectSIMULATION-
dc.titleA novel methodology for systematic study on molecular release from microscale reservoirs-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1039/C2SM07355B-
dc.author.google정운룡(교신저자)-
dc.relation.volume14-
dc.relation.issue3762-
dc.relation.startpage3770-
dc.relation.lastpageA novel methodology for systematic study on molecular release from microscale reservoirs-
dc.contributor.id10174497-
dc.relation.journal1744-683X-
dc.relation.indexSCI-
dc.relation.sciSoft Matter-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationSoft Matter, v.8, no.14, pp.3762 - 3770-
dc.identifier.wosid000301499300009-
dc.date.tcdate2019-01-01-
dc.citation.endPage3770-
dc.citation.number14-
dc.citation.startPage3762-
dc.citation.titleSoft Matter-
dc.citation.volume8-
dc.contributor.affiliatedAuthorJeong, U-
dc.identifier.scopusid2-s2.0-84863374213-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc3-
dc.description.scptc3*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusPROGESTIN PERMEATION-
dc.subject.keywordPlusAMORPHOUS POLYMERS-
dc.subject.keywordPlusSMALL PENETRANTS-
dc.subject.keywordPlusPOROUS SILICON-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusDRUG-DELIVERY SYSTEMS-
dc.subject.keywordPlusBUCKLING-BASED METROLOGY-
dc.subject.keywordPlusPOLYMERIC THIN-FILMS-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalResearchAreaPolymer Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

정운룡JEONG, UNYONG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse