Open Access System for Information Sharing

Login Library

 

Article
Cited 23 time in webofscience Cited 25 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorDongwhi Choi-
dc.contributor.authorKim, DS-
dc.date.accessioned2016-03-31T08:04:05Z-
dc.date.available2016-03-31T08:04:05Z-
dc.date.created2014-06-18-
dc.date.issued2014-06-17-
dc.identifier.issn0743-7463-
dc.identifier.other2014-OAK-0000029988-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/14487-
dc.description.abstractWe report that the zeta potential of a pipet tip's inner surface is one of the crucial parameters for controlling the electrical charge of the dispensed droplet. Since the charge is unexpected and undesirable for most experiments in various fields of science and, thereby, they can cause unsuspected problems, reducing the charge on a dispensed droplet is important for the results of pipetting-based experiments. We fabricate a graphene-based nanocomposite-coated pipet tip, which we called a zeta-pipet tip, as a proof-of-concept example to reduce the zeta potential of the pipet tip's inner surface. The fabricated zeta-pipet tip can successfully mitigate the undesired droplet separation in the droplet merging experiments in an oil bath, which is one of the unexpected effects caused by the electrification. The findings of this study provide helpful guidelines for researchers in many fields of science and technology, who utilize a pipet tip in their respective experiments.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfLangmuir-
dc.titleA Zeta (zeta)-Pipet Tip to Reduce the Spontaneously Induced Electrical Charge of a Dispensed Aqueous Droplet-
dc.typeArticle-
dc.contributor.college기계공학과-
dc.identifier.doi10.1021/LA5018196-
dc.author.googleChoi, D-
dc.author.googleKim, DS-
dc.relation.volume30-
dc.relation.startpage6644-
dc.relation.lastpage6648-
dc.contributor.id10170232-
dc.relation.journalLangmuir-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationLangmuir, v.30, no.23, pp.6644 - 6648-
dc.identifier.wosid000337644200002-
dc.date.tcdate2019-01-01-
dc.citation.endPage6648-
dc.citation.number23-
dc.citation.startPage6644-
dc.citation.titleLangmuir-
dc.citation.volume30-
dc.contributor.affiliatedAuthorKim, DS-
dc.identifier.scopusid2-s2.0-84902578582-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc11-
dc.description.scptc12*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusSURFACE-CHARGE-
dc.subject.keywordPlusMICROFLUIDIC DEVICES-
dc.subject.keywordPlusEVAPORATION-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusPOLYMERS-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김동성KIM, DONG SUNG
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse