Open Access System for Information Sharing

Login Library

 

Article
Cited 17 time in webofscience Cited 19 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorSingh, S-
dc.contributor.authorYou, D-
dc.date.accessioned2016-03-31T08:07:39Z-
dc.date.available2016-03-31T08:07:39Z-
dc.date.created2014-03-20-
dc.date.issued2013-08-
dc.identifier.issn0142-727X-
dc.identifier.other2013-OAK-0000029625-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/14620-
dc.description.abstractA dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations. (c) 2013 Elsevier Inc. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE INC-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW-
dc.subjectSubgrid-scale model-
dc.subjectLarge-eddy simulation-
dc.subjectTurbulence simulation-
dc.subjectGlobal-coefficient model-
dc.subjectScale-similarity model-
dc.subjectNavier-Stokes equations-
dc.subjectNAVIER-STOKES EQUATIONS-
dc.subjectCOMPLEX GEOMETRIES-
dc.titleA dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows-
dc.typeArticle-
dc.contributor.college기계공학과-
dc.identifier.doi10.1016/J.IJHEATFLUIDFLOW.2013.02.008-
dc.author.googleSingh, S-
dc.author.googleYou, D-
dc.relation.volume42-
dc.relation.startpage94-
dc.relation.lastpage104-
dc.contributor.id10201266-
dc.relation.journalINTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCIE-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, v.42, pp.94 - 104-
dc.identifier.wosid000321725100008-
dc.date.tcdate2019-01-01-
dc.citation.endPage104-
dc.citation.startPage94-
dc.citation.titleINTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW-
dc.citation.volume42-
dc.contributor.affiliatedAuthorYou, D-
dc.identifier.scopusid2-s2.0-84879162640-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc9-
dc.description.scptc8*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordAuthorSubgrid-scale model-
dc.subject.keywordAuthorLarge-eddy simulation-
dc.subject.keywordAuthorTurbulence simulation-
dc.subject.keywordAuthorGlobal-coefficient model-
dc.subject.keywordAuthorScale-similarity model-
dc.subject.keywordAuthorNavier-Stokes equations-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

유동현YOU, DONGHYUN
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse