Open Access System for Information Sharing

Login Library

 

Article
Cited 45 time in webofscience Cited 53 time in scopus
Metadata Downloads

Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction SCIE SCOPUS

Title
Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction
Authors
Kang, JSJae Bok SEolPark, CG
Date Issued
2013-05
Publisher
Materials Characterization
Abstract
We investigated the microstructural evolution of high strength low alloy steel, Fe-2.0-Mn0.15Si-0.05C (wt.%), by varying the continuous cooling rates from 1 K/s to 50 K/s using three-dimensional electron backscatter diffraction and transmission electron microscopy. Granular bainitic microstructure was prevalent under a slow cooling rate of 1-10 K/s, while lath-type bainite was dominant at a high cooling rate of 50 K/s. The acicular ferrite that was the major microstructure under the intermediate ranges of cooling rates between 10 K/s and 30 K/s was tangled with each other, leading to a three-dimensional interwoven structure with highly misoriented grains. Because of the formation of three-dimensional structures, we propose that the terms "acicular ferrite" and "bainitic ferrite," which are currently used in steel, be replaced by the terms "interwoven acicular bainite" and "lath bainite," respectively. Moreover, we also confirmed that the cooling rate is an important factor in determining whether bainitic microstructures occur in the form of granular bainite, interwoven bainite, or lath bainite. (C) 2013 Elsevier Inc. All rights reserved.
Keywords
Line pipe HSLA steel; Granular bainite; Interwoven bainite; Lath bainite; Electron backscatter diffraction; ACICULAR FERRITE; MECHANICAL-PROPERTIES; TRIP STEELS; HSLA STEELS; TRANSFORMATION; TOMOGRAPHY; MORPHOLOGY; FIB; MN; PRECIPITATION
URI
https://oasis.postech.ac.kr/handle/2014.oak/14985
DOI
10.1016/J.MATCHAR.2013.02.009
ISSN
1044-5803
Article Type
Article
Citation
Materials Characterization, vol. 79, page. 110 - 121, 2013-05
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박찬경PARK, CHAN GYUNG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse