Open Access System for Information Sharing

Login Library

 

Article
Cited 32 time in webofscience Cited 32 time in scopus
Metadata Downloads

Effect of microstructure refinement on performance of Ni/Ce0.8Gd0.2O1.9 anodes for low temperature solid oxide fuel cell SCIE SCOPUS

Title
Effect of microstructure refinement on performance of Ni/Ce0.8Gd0.2O1.9 anodes for low temperature solid oxide fuel cell
Authors
Torknik, FSKeyanpour-Rad, MMaghsoudipour, ACHOI, GYEONG MAN
Date Issued
2014-01
Publisher
ELSEVIER
Abstract
To clarify the role of milling process on polarization resistance of Ni/GDC cermet anodes for low temperature solid oxide fuel cell (LT-SOFC), an anode with the structure of NiO/Ce0.8Gd0.2O2-delta (NiO/GDC20) was prepared Via two different milling processes, including conventional ball-milling (CBM) and high energy ball-milling (HEBM). NiO/GDC20 anode composites were fabricated by screen-printing of the milled powders on the dense sintered GDC electrolyte substrate. By employing electrochemical impedance spectroscopy analysis, the effect of the milling process intensity on the LT-SOFC anode performance was examined using a symmetric Ni-GDC20/GDC20/Pt electrolyte-supported cell at 400-600 degrees C. Microstructural studies of NiO/GDC composite powders showed effectiveness of HEBM method on disintegration of CBM aggregates. HEBM powder with much finer particle size showed smaller crystallites than the CBM powder, which led to a finer-grained uniformly-distributed Ni/GDC anode microstructure. In comparison with the anode prepared by CBM powder, the resulted cermet anode showed further GDC lattice expansion, lower anodic polarization resistance, and also decreased activation energy for hydrogen oxidation reaction. Detailed anode impedance analysis showed dominant role of the charge transfer process and rate determining step of dissociation/adsorption/diffusion in hydrogen-oxidation reaction of both Ni/GDC anodes. In addition, evaluation of activation energy showed enhancement of the charge transfer and dissociation/adsorption/diffusion steps with finer-grained microstructure. It is found that the refinement of microstructure has a significant role on the anode polarization resistance and related electrochemical processes. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
URI
https://oasis.postech.ac.kr/handle/2014.oak/15008
DOI
10.1016/J.CERAMINT.2013.07.015
ISSN
0272-8842
Article Type
Article
Citation
Ceramics International, vol. 40, no. 1, page. 1341 - 1350, 2014-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

최경만CHOI, GYEONG MAN
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse