Open Access System for Information Sharing

Login Library

 

Article
Cited 5 time in webofscience Cited 6 time in scopus
Metadata Downloads

Flexure-Based Device for Cyclic Strain-Mediated Osteogenic Differentiation SCIE SCOPUS

Title
Flexure-Based Device for Cyclic Strain-Mediated Osteogenic Differentiation
Authors
Kang, KSJeong, YHHong, JMYong, WJRhie, JWCho, DW
Date Issued
2013-11
Publisher
ASME
Abstract
Application of low-magnitude strains to cells on small-thickness scaffolds, such as those for rodent calvarial defect models, is problematic, because general translation systems have limitations in terms of generating low-magnitude smooth signals. To overcome this limitation, we developed a cyclic strain generator using a customized, flexure-based, translational nanoactuator that enabled generation of low-magnitude smooth strains at the subnano-to micrometer scale to cells on small-thickness scaffolds. The cyclic strain generator we developed showed predictable operational characteristics by generating a sinusoidal signal of a few micrometers (4.5 mu m) without any distortion. Three-dimensional scaffolds fitting the critical-size rat calvarial defect model were fabricated using poly(caprolactone), poly(lactic-co-glycolic acid), and tricalcium phosphate. Stimulation of human adipose-derived stem cells (ASCs) on these fabricated scaffolds using the cyclic strain generator we developed resulted in upregulated osteogenic marker expression compared to the nonstimulated group. These preliminary in vitro results suggest that the cyclic strain generator successfully provided mechanical stimulation to cells on small-thickness scaffolds, which influenced the osteogenic differentiation of ASCs.
Keywords
adipose-derived stem cells; cyclic strain; flexure; nanoactuator; osteogenic differentiation; piezoelectric actuator; MARROW STROMAL CELLS; MESENCHYMAL STEM-CELLS; OSTEOBLAST-LIKE CELLS; BONE REGENERATION; IN-VITRO; MECHANICAL STRAIN; EXTRACELLULAR-MATRIX; SIGNAL-TRANSDUCTION; RAT CALVARIA; FABRICATION
URI
https://oasis.postech.ac.kr/handle/2014.oak/15170
DOI
10.1115/1.4025103
ISSN
0148-0731
Article Type
Article
Citation
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, vol. 135, no. 11, 2013-11
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조동우CHO, DONG WOO
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse