Open Access System for Information Sharing

Login Library

 

Article
Cited 130 time in webofscience Cited 148 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorXue, X-
dc.contributor.authorTang, J-
dc.contributor.authorSammes, N-
dc.contributor.authorDu, Y-
dc.date.accessioned2016-03-31T08:28:01Z-
dc.date.available2016-03-31T08:28:01Z-
dc.date.created2013-07-31-
dc.date.issued2005-03-24-
dc.identifier.issn0378-7753-
dc.identifier.other2005-OAK-0000027973-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/15370-
dc.description.abstractIn this paper, a dynamic model of a single tubular solid oxide fuel cell (SOFC) unit is developed using the control volume (CV) approach. The heat transfer, species transportation, and electrochemical reaction effects are taken into account in a collective manner. Using this model, we study the spatial distributions of a series of state variables under both steady-state and transient operations and evaluate the system dynamic behavior. The analysis shows that there exists non-uniform current contribution and Nernst potential distribution along the longitudinal direction, caused by the non-uniform fuel/gas partial pressures along the flow direction and the temperature distribution in the anode/cathode channel and cell body, for example. The classical Nernst potential relation is revised to capture the characteristics of the fuel cell under time varying external load voltage. Comprehensive numerical simulations are carried out to explore the underlying dynamic properties in typical SOFC operations. The numerical study is also correlated to experimental results such as the polarization curve and power density, which shows good agreement. (c) 2004 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfJOURNAL OF POWER SOURCES-
dc.subjectSOFC-
dc.subjectdynamic modeling-
dc.subjecttubular-
dc.subjectheat transfer-
dc.subjectmass transfer-
dc.subjectOXIDE FUEL-CELLS-
dc.subjectSIMULATION-
dc.subjectSYSTEMS-
dc.subjectDESIGN-
dc.subjectSTACK-
dc.titleDynamic Modelling of Single Tubular SOFC Combining Heat/Mass Transfer and Electrochemical Relation Effects-
dc.typeArticle-
dc.contributor.college첨단원자력공학부-
dc.identifier.doi10.1016/J.JPOWSOUR.2004.11.023-
dc.author.googleXue, X-
dc.author.googleTang, J-
dc.author.googleSammes, N-
dc.author.googleDu, Y-
dc.relation.volume142-
dc.relation.issue1-
dc.relation.startpage211-
dc.relation.lastpage222-
dc.contributor.id10978306-
dc.relation.journalJOURNAL OF POWER SOURCES-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.142, no.1, pp.211 - 222-
dc.identifier.wosid000228422500024-
dc.date.tcdate2019-01-01-
dc.citation.endPage222-
dc.citation.number1-
dc.citation.startPage211-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume142-
dc.contributor.affiliatedAuthorSammes, N-
dc.identifier.scopusid2-s2.0-15344349694-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc110-
dc.description.scptc119*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusOXIDE FUEL-CELLS-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSTACK-
dc.subject.keywordAuthorSOFC-
dc.subject.keywordAuthordynamic modeling-
dc.subject.keywordAuthortubular-
dc.subject.keywordAuthorheat transfer-
dc.subject.keywordAuthormass transfer-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

Nigel Mark SammesNIGEL, MARK SAMMES
Div. of Advanced Nuclear Enginrg
Read more

Views & Downloads

Browse