Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorNikolay Lavrov-
dc.contributor.authorAlevtina Smirnova-
dc.contributor.authorHaluk Gorgun-
dc.contributor.authorSammes, N-
dc.date.accessioned2016-03-31T08:28:12Z-
dc.date.available2016-03-31T08:28:12Z-
dc.date.created2013-07-31-
dc.date.issued2006-04-21-
dc.identifier.issn0378-7753-
dc.identifier.other2006-OAK-0000027963-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/15377-
dc.description.abstractExperimental data show that heterogeneous nanostructure of solid oxide and polymer electrolyte fuel cells could be approximated as an infinite set of fiber-like or penny-shaped inclusions in a continuous medium. Inclusions can be arranged in a cluster mode and regular or random order. In the newly proposed theoretical model of nanostructured material, the most attention is paid to the small aspect ratio of structural elements as well as to some model problems of electrostatics. The proposed integral equation for electric potential caused by the charge distributed over the single circular or elliptic cylindrical conductor of finite length, as a single unit of a nanostructured material, has been asymptotically simplified for the small aspect ratio and solved numerically. The result demonstrates that surface density changes slightly in the middle part of the thin domain and has boundary layers localized near the edges. It is anticipated, that contribution of boundary layer solution to the surface density is significant and cannot be governed by classic equation for smooth linear charge. The role of the cross-section shape is also investigated. Proposed approach is sufficiently simple, robust and allows extension to either regular or irregular system of various inclusions. This approach can be used for the development of the system of conducting inclusions, which are commonly present in nanostructured materials used for solid oxide and polymer electrolyte fuel cell (PEMFC) materials. (c) 2005 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfJOURNAL OF POWER SOURCES-
dc.subjectfuel cell-
dc.subjectgas diffusion medium-
dc.subjectthin conducting inclusion-
dc.subjectcharge distribution-
dc.subjectheterogeneous structure-
dc.subjectGAS SEPARATION-
dc.subjectFUEL-CELLS-
dc.subjectPERFORMANCE-
dc.subjectMEMBRANES-
dc.titleThin inclusion approach for modelling of heterogeneous conducting materials-
dc.typeArticle-
dc.contributor.college첨단원자력공학부-
dc.identifier.doi10.1016/J.JPOWSOUR.2005.05.058-
dc.author.googleLavrov, N-
dc.author.googleSmirnova, A-
dc.author.googleGorgun, H-
dc.author.googleSammes, N-
dc.relation.volume155-
dc.relation.issue2-
dc.relation.startpage239-
dc.relation.lastpage245-
dc.contributor.id10978306-
dc.relation.journalJOURNAL OF POWER SOURCES-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.155, no.2, pp.239 - 245-
dc.identifier.wosid000237003000018-
dc.date.tcdate2019-01-01-
dc.citation.endPage245-
dc.citation.number2-
dc.citation.startPage239-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume155-
dc.contributor.affiliatedAuthorSammes, N-
dc.identifier.scopusid2-s2.0-33645700690-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc1-
dc.description.scptc1*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordAuthorfuel cell-
dc.subject.keywordAuthorgas diffusion medium-
dc.subject.keywordAuthorthin conducting inclusion-
dc.subject.keywordAuthorcharge distribution-
dc.subject.keywordAuthorheterogeneous structure-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

Nigel Mark SammesNIGEL, MARK SAMMES
Div. of Advanced Nuclear Enginrg
Read more

Views & Downloads

Browse