Open Access System for Information Sharing

Login Library

 

Article
Cited 8 time in webofscience Cited 8 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJun, HJ-
dc.contributor.authorLee, KS-
dc.contributor.authorKato, H-
dc.contributor.authorKim, HS-
dc.contributor.authorChang, YW-
dc.date.accessioned2016-03-31T08:41:59Z-
dc.date.available2016-03-31T08:41:59Z-
dc.date.created2013-03-08-
dc.date.issued2012-08-
dc.identifier.issn0927-0256-
dc.identifier.other2012-OAK-0000026963-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/15852-
dc.description.abstractA constitutive equation based on a free volume model, that describes the strain rate dependent deformation behavior of bulk metallic glasses (BMGs) within the supercooled liquid region, has been modified in this paper in order to reproduce the stress increment that occurs due to crystalline phase formation during lengthy exposure to high temperature in compression deformation. A comparison of the simulated results obtained from finite element analyzes with the compression test results for Ti-Zr-Ni-Be BMG alloy has been conducted to determine the validity of the proposed model. Plastic deformation modes such as Newtonian and non-Newtonian viscous flows of this BMG alloy were found to be reproduced well by the finite element method simulations combined with the free volume based constitutive relations and to show a phenomenon of stress increment deviated from the steady state. Therefore, the constitutive relations introduced here are expected to allow accurate reproduction of the high temperature behavior and better estimation of the formability of BMG alloys. (c) 2012 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.relation.isPartOfCOMPUTATIONAL MATERIALS SCIENCE-
dc.subjectBulk metallic glass-
dc.subjectSupercooled liquid region-
dc.subjectHigh temperature deformation-
dc.subjectConstitutive model-
dc.subjectFinite element method-
dc.subjectAMORPHOUS-ALLOYS-
dc.subjectSHEAR BANDS-
dc.subjectSTATE-
dc.subjectFORMABILITY-
dc.subjectFLOW-
dc.subjectEXTRUSION-
dc.subjectCRYSTALLIZATION-
dc.subjectRELAXATION-
dc.titleConstitutive model for high temperature deformation behavior of Ti-Zr-Ni-Be bulk metallic glass in supercooled liquid region-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1016/J.COMMATSCI.2012.04.006-
dc.author.googleJun, HJ-
dc.author.googleLee, KS-
dc.author.googleKato, H-
dc.author.googleKim, HS-
dc.author.googleChang, YW-
dc.relation.volume61-
dc.relation.startpage213-
dc.relation.lastpage223-
dc.contributor.id10056225-
dc.relation.journalCOMPUTATIONAL MATERIALS SCIENCE-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationCOMPUTATIONAL MATERIALS SCIENCE, v.61, pp.213 - 223-
dc.identifier.wosid000304562000029-
dc.date.tcdate2019-01-01-
dc.citation.endPage223-
dc.citation.startPage213-
dc.citation.titleCOMPUTATIONAL MATERIALS SCIENCE-
dc.citation.volume61-
dc.contributor.affiliatedAuthorKim, HS-
dc.identifier.scopusid2-s2.0-84860556060-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc7-
dc.description.scptc6*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusFORMABILITY-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusCRYSTALLIZATION-
dc.subject.keywordPlusRELAXATION-
dc.subject.keywordPlusEXTRUSION-
dc.subject.keywordAuthorBulk metallic glass-
dc.subject.keywordAuthorSupercooled liquid region-
dc.subject.keywordAuthorHigh temperature deformation-
dc.subject.keywordAuthorConstitutive model-
dc.subject.keywordAuthorFinite element method-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse