Open Access System for Information Sharing

Login Library

 

Article
Cited 59 time in webofscience Cited 0 time in scopus
Metadata Downloads

Three methods for stabilization and functionalization of porous silicon surfaces via hydrosilylation and electrografting reactions SCIE SCOPUS

Title
Three methods for stabilization and functionalization of porous silicon surfaces via hydrosilylation and electrografting reactions
Authors
Stewart, MPRobins, EGGeders, TWAllen, MJChoi, HCBuriak, JM
Date Issued
2000-11
Publisher
WILEY-BLACKWELL
Abstract
Three reactions are discussed which accomplish a high degree of substitution of the silicon hydride bonds on the porous silicon (pSi) surface with silicon-carbon bonds. Lewis acid mediated (LAM) and white light-promoted (LP) hydrosilylation of alkynes and alkenes gives surfaces with alkenyl and alkyl residues, respectively. Evidence for the silicon-carbon bonds is given by solid-state NMR spectroscopy of free-standing pSi material. The extent of the substitution of the surface bonds is termed reaction efficiency (E) which is measured by the change in the integrated area of the silicon hydride stretch region in FTIR spectra (2000-2200 cm(-1)). The LAM hydrosilylation gives a hight I E value than the LP reaction. The E value of the LAM reaction is believed to be limited by the efficiency of the catalyst diffusion throughout the porous structure. In the case of the LP reaction, it is limited by the relative quantity of visible light-exposed material in comparison to the entire amount of IR-apparent silicon hydride bonds. The cathodic electrografting (CEG) reaction gives directly attached alkynyl residues via reduction of a silicon hydride bond to generate alkynyl carbanions, which then react with silicon-silicon bonds.
Keywords
CARBON BONDS; ALKYNES; ALKENES
URI
https://oasis.postech.ac.kr/handle/2014.oak/16930
DOI
10.1002/1521-396X(200011)182:1<109::AID-PSSA109>3.0.CO;2-#
ISSN
0031-8965
Article Type
Article
Citation
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, vol. 182, no. 1, page. 109 - 115, 2000-11
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse