Open Access System for Information Sharing

Login Library

 

Article
Cited 283 time in webofscience Cited 298 time in scopus
Metadata Downloads

Lewis acid mediated hydrosilylation on porous silicon surfaces SCIE SCOPUS

Title
Lewis acid mediated hydrosilylation on porous silicon surfaces
Authors
Buriak, JMStewart, MPGeders, TWAllen, MJChoi, HCSmith, JRaftery, DCanham, LT
Date Issued
1999-12-15
Publisher
AMER CHEMICAL SOC
Abstract
Lewis acid mediated hydrosilylation of alkynes and alkenes on non-oxidized hydride-terminated porous silicon derivatizes the surface with alkenyl and alkyl functionalities, respectively. A very broad range of chemical groups may be incorporated, allowing for tailoring of the interfacial characteristics of the material. The reaction is shown to protect and stabilize porous silicon surfaces from atmospheric or direct chemical attack without compromising its valuable material properties such as high porosity, surface area and visible room-temperature photoluminescence. The reaction is shown to act on alkenes and alkynes of all possible regiochemistries (terminal and internal alkynes; mono-, cis- and trans-, di-, tri-, and tetrasubstituted alkenes). FTIR as well as liquid- and solid-state NMR spectroscopies show anti-Markovnikov addition and cis stereochemistry in the case of hydrosilylated terminal alkynes. Material hydrosilylated with long-chain hydrophobic alkynes and alkenes shows a substantially slower surface oxidation and hydrolysis rate in air as monitored by long-term FTIR monitoring and chemography. BJH and BET measurements reveal that the surface area and average pore size of the material are reduced only slightly after hydrosilylation, indicating that the porous silicon skeleton remains intact. Elemental analysis and SIMS depth profiling show a consistent level of carbon incorporation throughout the porous silicon which demonstrates that the reaction occurs uniformly throughout the depth of the film. The effects of functionalization on photoluminescence were investigated and are shown to depend on the organic substituents.
Keywords
NUCLEAR-MAGNETIC-RESONANCE; ROOM-TEMPERATURE; ALKYL MONOLAYERS; SPECTROSCOPY; FABRICATION; ALKENES; SI; FUNCTIONALIZATION; PHOTOLUMINESCENT; REAGENTS
URI
https://oasis.postech.ac.kr/handle/2014.oak/16933
DOI
10.1021/JA992188W
ISSN
0002-7863
Article Type
Article
Citation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 121, no. 49, page. 11491 - 11502, 1999-12-15
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse