Open Access System for Information Sharing

Login Library

 

Article
Cited 29 time in webofscience Cited 33 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorDirk Steglich-
dc.contributor.authorWolfgang Brocks-
dc.contributor.authorJan Bohlen-
dc.contributor.authorBarlat, F-
dc.date.accessioned2016-03-31T09:24:27Z-
dc.date.available2016-03-31T09:24:27Z-
dc.date.created2011-08-28-
dc.date.issued2011-06-
dc.identifier.issn1960-6206-
dc.identifier.other2011-OAK-0000024130-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/17142-
dc.description.abstractIn this work, a model capturing anisotropic hardening during plastic deformation under monotonic loading is proposed. For this purpose, the anisotropic plastic potential coefficients are assumed to be functions of a measure of the accumulated plastic strain. This model is applied to describe the plastic behavior of a magnesium alloy (ZM21) sheet at room temperature. The selected plastic potential accounts for the main features of Mg alloy plasticity, i.e., anisotropy and strength-differential (SD) effects. All the accumulated plastic strain dependent coefficients of the phenomenological model are determined from input data generated with a crystal plasticity approach. They are optimized to best capture the accumulated strain dependent potentials computed with crystal plasticity. The R-value (Lankford coefficient) anisotropy is used as an independent measure for the assessment of the approximation quality. This model is implemented into a finite element (FE) code and successfully validated through the numerical simulations of the cup drawing test. The calculated earing profile obtained with the proposed hardening model is compared to results assuming isotropic hardening for various plausible shapes of the plastic potential. Although the ear and valley numbers and positions are similar in all cases, the height differences between peaks and valleys are strongly dependent on the type of constitutive approach used in the simulation.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfInternational Journal of Material Forming-
dc.subjectFinite elements-
dc.subjectAnisotropy-
dc.subjectPlasticity-
dc.subjectStrength differential effect-
dc.subjectParameter identification-
dc.subjectPACKED METALS-
dc.subjectPOLYCRYSTALS-
dc.subjectDEFORMATION-
dc.subjectCRITERION-
dc.subjectCRYSTALS-
dc.subjectBEHAVIOR-
dc.subjectSLIP-
dc.titleModelling direction-dependent Hardening in Magnesium Sheet Forming Simulations-
dc.typeArticle-
dc.contributor.college철강대학원-
dc.identifier.doi10.1007/S12289-011-1034-Y-
dc.author.googleSteglich D., Brocks W., Bohlen J., Barlat F.-
dc.relation.volume4-
dc.relation.issue2-
dc.relation.startpage243-
dc.relation.lastpage253-
dc.contributor.id10200290-
dc.relation.journalInternational Journal of Material Forming-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationInternational Journal of Material Forming, v.4, no.2, pp.243 - 253-
dc.identifier.wosid000307242000015-
dc.date.tcdate2019-01-01-
dc.citation.endPage253-
dc.citation.number2-
dc.citation.startPage243-
dc.citation.titleInternational Journal of Material Forming-
dc.citation.volume4-
dc.contributor.affiliatedAuthorBarlat, F-
dc.identifier.scopusid2-s2.0-79959250429-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc19-
dc.description.scptc19*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusCRITERION-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusCRYSTAL-
dc.subject.keywordPlusSLIP-
dc.subject.keywordAuthorFinite elements-
dc.subject.keywordAuthorAnisotropy-
dc.subject.keywordAuthorPlasticity-
dc.subject.keywordAuthorStrength differential effect-
dc.subject.keywordAuthorParameter identification-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse