Open Access System for Information Sharing

Login Library

 

Article
Cited 46 time in webofscience Cited 53 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, DY-
dc.contributor.authorLee, HM-
dc.contributor.authorMin, SK-
dc.contributor.authorCho, Y-
dc.contributor.authorHwang, IC-
dc.contributor.authorHan, K-
dc.contributor.authorKim, JY-
dc.contributor.authorKim, KS-
dc.date.accessioned2016-03-31T09:40:26Z-
dc.date.available2016-03-31T09:40:26Z-
dc.date.created2011-05-16-
dc.date.issued2011-04-07-
dc.identifier.issn1948-7185-
dc.identifier.other2011-OAK-0000023540-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/17464-
dc.description.abstractCapturing CO2 by aqueous ammonia has recently received much attention due to its advantages over other state-of-the-art CO2-capture technology. Thus, understanding this CO2-capturing mechanism, which has been causing controversy, is crucial for further development toward advanced CO2 capture. The CO2 conversion mechanism in aqueous ammonia is investigated using ab initio calculations and kinetic simulations. We show full details of all reaction pathways for the NH3-driven conversion mechanism of CO2 with the pronounced effect of microsolvation. Ammonia performs multiple roles as reactant, catalyst, base, and product controller. Both carbamic and carbonic acids are formed by the ammonia-driven trimolecular mechanism. Ammonia in microsolvation makes the formation of carbamic acid kinetically preferred over carbonic acid. As the concentration of CO2 increases, the dominant product becomes carbonic acid. The conversion from carbamic acid into carbonic acid occurs through the decomposition recombination pathway. This understanding would be exploited for the optimal CO2 capture technology.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfJOURNAL OF PHYSICAL CHEMISTRY LETTERS-
dc.subjectCARBONIC-ACID H2CO3-
dc.subjectCARBAMATE FORMATION-
dc.subjectAB-INITIO-
dc.subjectDIOXIDE-
dc.subjectABSORPTION-
dc.subjectKINETICS-
dc.subjectALKANOLAMINES-
dc.subjectTECHNOLOGY-
dc.subjectAMINES-
dc.titleCO2 Capturing Mechanism in Aqueous Ammonia: NH3-Driven Decomposition-Recombination Pathway-
dc.typeArticle-
dc.contributor.college화학과-
dc.identifier.doi10.1021/JZ200095J-
dc.author.googleKim, DY-
dc.author.googleLee, HM-
dc.author.googleMin, SK-
dc.author.googleCho, Y-
dc.author.googleHwang, IC-
dc.author.googleHan, K-
dc.author.googleKim, JY-
dc.author.googleKim, KS-
dc.relation.volume2-
dc.relation.issue7-
dc.relation.startpage689-
dc.relation.lastpage694-
dc.contributor.id10051563-
dc.relation.journalJOURNAL OF PHYSICAL CHEMISTRY LETTERS-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.2, no.7, pp.689 - 694-
dc.identifier.wosid000289341600002-
dc.date.tcdate2019-01-01-
dc.citation.endPage694-
dc.citation.number7-
dc.citation.startPage689-
dc.citation.titleJOURNAL OF PHYSICAL CHEMISTRY LETTERS-
dc.citation.volume2-
dc.contributor.affiliatedAuthorKim, KS-
dc.identifier.scopusid2-s2.0-79953777788-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc36-
dc.description.scptc36*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusCARBAMATE FORMATION-
dc.subject.keywordPlusAB-INITIO-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusTECHNOLOGY-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse