Open Access System for Information Sharing

Login Library

 

Article
Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads

H-2-Binding by Neutral and Multiply Charged Titaniums: Hydrogen Storage Capacity of Titanium Mono- and Dications SCIE SCOPUS

Title
H-2-Binding by Neutral and Multiply Charged Titaniums: Hydrogen Storage Capacity of Titanium Mono- and Dications
Authors
Lee, HMKim, DYPak, CSingh, NJKim, KS
Date Issued
2011-04
Publisher
AMER CHEMICAL SOC
Abstract
Given that transition metal-hydrogen systems have been studied as a predecessor for hydrogen storage materials, we have investigated the neutral and multiply charged titanium-H-2 systems (Ti-H-2, Ti+-H-2, Ti2+-H-2, Ti3+-H-2, and Ti4+-H-2) using density functional theory (DFT) and high-level ab initio calculations, including coupled cluster theory with single, double, and perturbatively triple excitations [CCSD (T)]. These systems show different types of hydrogenation depending on their charged state. The neutral Ti-H-2 system shows dihydride structure with covalent interaction where the Ti-H distance is 1.76 angstrom, while H-2 is dissociated into two neigboring hydride ions by withdrawing electrons from Ti. The charged Ti-H-2, Ti2+-H-2, and Ti3+-H-2 systems show dihydrogen structures with noncovalent interaction, where the Ti+-H, Ti2+-H, and Ti3+-H distances are 2.00, 2.14, and 2.12 angstrom, respectively. The main binding energies in these systems arise from the hydrogen polarizability driven interaction by the positive charge of Tin+ (n = 1-3). Among Tin+-H-2 (n = 1-3) the Ti+-H-2 has the shortest distance against our common expectation, while Ti2+-H-2 has the longest distance. The Ti+-H2 distance is the shortest because of the d-o* molecular orbital (MO) interaction which is not present in Ti2+-H-2 and Ti3+-H-2. The Ti4+ ion does not bind H-2. In this regard, we have investigated the maximal hydrogen binding capacity by Ti complexes. The coordination of titanium mono- and dications complexed with dihydrogen (H-2) [Ti+(H-2)(n) and Ti2+(H-2)(m)] is studied along with their structures, binding energies, electronic properties, and spectra. The titanium monocations of the quartet ground state have up to the hexacoordinaton, while titanium dications of the triplet ground state have up to the octacoordination at very low temperatures. At room temperature, the monocations favor penta- to hexacoordination, while the dications favor hexacoordination. This information would be useful for the design of hydrogen storage devices of Ti complexes, such as Ti-decorated/dispersed polymer-graphene hybrid materials.
Keywords
BINDING-ENERGIES; BONDING INTERACTIONS; ORGANIC FRAMEWORKS; BASIS-SET; CLUSTERS; TI; H-2; AMIDOBORANES; PARAMETERS; COMPLEXES
URI
https://oasis.postech.ac.kr/handle/2014.oak/17471
DOI
10.1021/CT1007444
ISSN
1549-9618
Article Type
Article
Citation
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, vol. 7, no. 4, page. 969 - 978, 2011-04
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse