Open Access System for Information Sharing

Login Library

 

Article
Cited 126 time in webofscience Cited 129 time in scopus
Metadata Downloads

Reversing CdS Preparation Order and Its Effects on Photocatalytic Hydrogen Production of CdS/Pt-TiO2 Hybrids Under Visible Light SCIE SCOPUS

Title
Reversing CdS Preparation Order and Its Effects on Photocatalytic Hydrogen Production of CdS/Pt-TiO2 Hybrids Under Visible Light
Authors
Park, HKirn, YKChoi, W
Date Issued
2011-04-07
Publisher
AMER CHEMICAL SOC
Abstract
A facile synthesis of high efficiency semiconductor photocatalyst hybrids is of great importance in making the photocatalytic systems more viable and applicable. This study presents that simply reversing chemical precipitation order of CdS results in significantly different photocatalytic activity in terms of hydrogen production from water under visible light when hybridized with platinized TiO2 particles (Pt-TiO2). It has been found that CdS obtained via dropping an aqueous cadmium cation in aqueous sulfide solution (i.e., Pt-TiO2 suspension with S2-) with equal molar ratios (hereafter CdSR) has a maximum >10-fold greater amount of hydrogen than that obtained by simply reversing the dropping order (i.e., dropping S2- to Pt-TiO2 suspension with Cd2+; hereafter CdRS). Such a high activity of CdSR, however, is very sensitive to photocatalytic running conditions, in particular, kind and concentration of electron donor (Na2S and/or Na2SO3) which largely changes the hydrogen production ratio (R-H) of CdSR to CdRS. Detailed surface analyses indicate that physicochemical properties of CdSR are very different from those of CdRS including larger and red-shifted onset light absorption and altered photoluminescence, S/Cd atomic ratios >1, and hexagonal crystallinity (vs cubic-CdRS), the differences of which were attributed to the primary reasons for higher activity of CdSR. Finally, the photocatalytic hydrogen production mechanism was proposed based on the experimental results.
Keywords
OPTICAL-PROPERTIES; ELECTRON-TRANSFER; AQUEOUS-SOLUTIONS; BAND-GAP; TIO2; NANOPARTICLES; FILMS; NANOCLUSTERS; NANOCRYSTALS; BEHAVIORS
URI
https://oasis.postech.ac.kr/handle/2014.oak/17475
DOI
10.1021/JP2015319
ISSN
1932-7447
Article Type
Article
Citation
JOURNAL OF PHYSICAL CHEMISTRY C, vol. 115, no. 13, page. 6141 - 6148, 2011-04-07
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

최원용CHOI, WONYONG
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse