Open Access System for Information Sharing

Login Library

 

Article
Cited 114 time in webofscience Cited 147 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKang, S-
dc.contributor.authorChoi, B-
dc.contributor.authorKim, B-
dc.date.accessioned2016-03-31T12:52:26Z-
dc.date.available2016-03-31T12:52:26Z-
dc.date.created2009-02-28-
dc.date.issued2003-03-
dc.identifier.issn0018-9480-
dc.identifier.other2003-OAK-0000003313-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/18596-
dc.description.abstractThe linearity of CMOS has been analyzed using the Taylor series. Transconductance and output conductance are two dominant nonlinear sources of CMOS. At a low frequency, the transconductance is a dominant nonlinear source for a low load impedance, but for a usual operation level impedance the output conductance is a dominant nonlinear source. Capacitances and the substrate network do not generate any significant nonlinearity, but they suppress output-conductance nonlinearity at a high frequency because output impedance is reduced by the capacitive shunts, and output voltage swing is also reduced. Therefore, above 2-3 GHz, the transconductance becomes a dominant nonlinear source for a usual load impedance. If these capacitive elements are tuned out for a power match, the behavior becomes similar to the low-frequency case. As gate length is reduced, the transconductance becomes more linear, but the output conductance becomes more nonlinear. At a low frequency, CMOS linearity is degraded as the gate length becomes shorter, but at a higher frequency (above 2-3 GHz), linearity can be improved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGI-
dc.relation.isPartOfIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES-
dc.subjectCMOS-
dc.subjectlinearity-
dc.titleLinearity analysis of CMOS for RF application-
dc.typeArticle-
dc.contributor.college전자전기공학과-
dc.identifier.doi10.1109/TMTT.2003.808709-
dc.author.googleKang, S-
dc.author.googleChoi, B-
dc.author.googleKim, B-
dc.relation.volume51-
dc.relation.issue3-
dc.relation.startpage972-
dc.relation.lastpage977-
dc.contributor.id10106173-
dc.relation.journalIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, v.51, no.3, pp.972 - 977-
dc.identifier.wosid000182000700039-
dc.date.tcdate2019-01-01-
dc.citation.endPage977-
dc.citation.number3-
dc.citation.startPage972-
dc.citation.titleIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES-
dc.citation.volume51-
dc.contributor.affiliatedAuthorKim, B-
dc.identifier.scopusid2-s2.0-0037361403-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc70-
dc.type.docTypeArticle-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김범만KIM, BUM MAN
Dept of Electrical Enginrg
Read more

Views & Downloads

Browse