Open Access System for Information Sharing

Login Library

 

Article
Cited 25 time in webofscience Cited 25 time in scopus
Metadata Downloads

Pseudoreversion of the catalytic activity of Y14F by the additional substitution(s) of tyrosine with phenylalanine in the hydrogen bond network of Delta(5)-3-ketosteroid isomerase from Pseudomonas putida Biotype B SCIE SCOPUS

Title
Pseudoreversion of the catalytic activity of Y14F by the additional substitution(s) of tyrosine with phenylalanine in the hydrogen bond network of Delta(5)-3-ketosteroid isomerase from Pseudomonas putida Biotype B
Authors
Choi, KYChoi, GHa, NCKim, MSHong, BHOh, BH
Date Issued
2001-06-12
Publisher
AMER CHEMICAL SOC
Abstract
Delta (5)-3-ketosteroid isomerase (KSI) from Pseudomonas putida Biotype B catalyzes the allylic isomerization of Delta (5)-3-ketosteroids to their conjugated Delta (4)-isomers via a dienolate intermediate. Two electrophilic catalysts, Tyr-14 and Asp-99, are involved in a hydrogen bond network that comprises Asp99 O delta2 . . .O of Wat504 . . . Tyr-14 O eta . . . Tyr-55 O eta . . . Tyr-30 O eta in the active site of P, putida KSI. Even though neither Tyr-30 nor Tyr-55 plays an essential role in catalysis by the KSI, the catalytic activity of Y14F could be increased ca. 26-51-fold by the additional Y30F and/or Y55F mutation in the hydrogen bond network. To identify the structural basis for the pseudoreversion in the KSI, crystal structures of Y14F and Y14F/Y30F/Y55F have been determined at 1.8 and 2.0 Angstrom resolution, respectively. Comparisons of the two structures near the catalytic center indicate that the hydrogen bond between Asp-99 O delta2 and C3-O of the steroid, which is perturbed by the Y14F mutation, can be partially restored to that in the wild-type enzyme by the additional Y30F/Y55F mutations. The kinetic parameters of the tyrosine mutants with the additional D99N or D99L mutation also support the idea that Asp-99 contributes to catalysis more efficiently in Y14F/Y30F/Y55F than in Y14F. In contrast to the catalytic mechanism of Y14F, the C4 proton of the steroid substrate was found to be transferred to the C6 position in Y14F/Y30F/Y55F with little exchange of the substrate 4 beta -proton with a solvent deuterium based on the reaction rate in D2O. Taken together, our findings strongly suggest that the improvement in the catalytic activity of Y14F by the additional Y30F/Y55F mutations is due to the changes in the structural integrity at the catalytic site and the resulting restoration of the proton-transfer mechanism in Y14F/Y30F/Y55F.
URI
https://oasis.postech.ac.kr/handle/2014.oak/19518
DOI
10.1021/BI002767+
ISSN
0006-2960
Article Type
Article
Citation
BIOCHEMISTRY, vol. 40, no. 23, page. 6828 - 6835, 2001-06-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

최관용CHOI, KWAN YONG
Div of Integrative Biosci & Biotech
Read more

Views & Downloads

Browse