Open Access System for Information Sharing

Login Library

 

Article
Cited 17 time in webofscience Cited 17 time in scopus
Metadata Downloads

Folding mechanism of ketosteroid isomerase from Comamonas testosteroni SCIE SCOPUS

Title
Folding mechanism of ketosteroid isomerase from Comamonas testosteroni
Authors
Kim, DHJang, DSNam, GHChoi, KY
Date Issued
2001-04-24
Publisher
AMER CHEMICAL SOC
Abstract
Ketosteroid isomerase (KSI) from Comamonas testosteroni is a homodimeric enzyme with 125 amino acids in each monomer catalyzing the allylic isomerization reaction at rates comparable to the diffusion limit. Kinetic analysis of KSI refolding has been carried out to understand its folding mechanism. The refolding process as monitored by fluorescence change revealed that the process consists of three steps with a unimolecular fast, a bimolecular intermediate, and most likely unimolecular slow phases. The fast refolding step might involve the formation of structured monomers with hydrophobic surfaces that seem to have a high binding capacity for the amphipathic dye 8-anilino-1-naphthalenesulfonate. During the refolding process, KSI also generated a state that can bind equilenin, a reaction intermediate analogue, at a very early stage. These observations suggest that the KSI folding might be driven by the formation of the apolar active-site cavity while exposing hydrophobic surfaces. Since the monomeric folding intermediate may contain more than 83% of the native secondary structures as revealed previously, it is nativelike taking on most of the properties of the native protein. Urea-dependence analysis of refolding revealed the existence of folding intermediates for both the intermediate and slow steps. These steps were accelerated by cyclophilin A, a prolyl isomerase, suggesting the involvement of a cis-trans isomerization as a rate-limiting step. Taken together, we suggest that KSI folds into a monomeric intermediate, which has nativelike secondary structure, an apolar active site, and exposed hydrophobic surface, followed by dimerization and prolyl isomerizations to complete the folding.
Keywords
DIMERIC CORE DOMAIN; COLI TRP REPRESSOR; DELTA(5)-3-KETOSTEROID ISOMERASE; PSEUDOMONAS-TESTOSTERONI; CRYSTAL-STRUCTURE; 3-OXO-DELTA(5)-STEROID ISOMERASE; DELTA-5-3-KETOSTEROID ISOMERASE; PROTEIN; INTERMEDIATE; STATE
URI
https://oasis.postech.ac.kr/handle/2014.oak/19577
DOI
10.1021/BI0019139
ISSN
0006-2960
Article Type
Article
Citation
BIOCHEMISTRY, vol. 40, no. 16, page. 5011 - 5017, 2001-04-24
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

최관용CHOI, KWAN YONG
Div of Integrative Biosci & Biotech
Read more

Views & Downloads

Browse