Open Access System for Information Sharing

Login Library

 

Article
Cited 23 time in webofscience Cited 25 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPark, JY-
dc.contributor.authorKim, IJ-
dc.contributor.authorLee, MH-
dc.contributor.authorSeo, JK-
dc.contributor.authorSuh, PG-
dc.contributor.authorCho, BY-
dc.contributor.authorRyu, SH-
dc.contributor.authorChae, CB-
dc.date.accessioned2016-03-31T14:14:41Z-
dc.date.available2016-03-31T14:14:41Z-
dc.date.created2009-08-12-
dc.date.issued1997-02-
dc.identifier.issn0013-7227-
dc.identifier.other1997-OAK-0000009650-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/21399-
dc.description.abstractGraves' disease is characterized by the overproduction of thyroid hormones due to the persistent stimulation of TSH receptor by autoantibodies. To determine the epitopes recognized by the autoantibodies, an enzyme-linked immunosorbent assay was developed that uses the human TSH receptor extracellular domain attached to plastic wells. The total IgG from some of the Graves' patients interacted with the bound TSH receptor (TSHR) at a significantly higher level than that in normal individuals. The IgG preparation that showed the highest binding activity was used for the identification of peptide sequences that prevent binding of Graves' IgG to TSHR from positional scanning synthetic peptide combinatorial libraries. A hexapeptide mixture, X(1)X(2)FDDA (X(1) is a mixture of E, M, and Y; X(2) is a mixture of E, H, and T), was found to be effective for inhibiting the binding of Graves' IgG to the TSHR. Further fractionation of X(1)X(2)FDDA showed that the following three sequences were highly effective: EEFDDA, ETFDDA, and EHFDDA. The second position of the three peptides did not appear to be important. The peptides also inhibited the cAMP synthesis induced by IgG of four of eight patients with Graves' disease tested. The synthesis of cAMP by TSH was also inhibited by the peptides to some extent. The peptide sequences most likely mimic a part of the conformational epitopes recognized by at least one class of Graves' IgG.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherENDOCRINE SOC-
dc.relation.isPartOfENDOCRINOLOGY-
dc.subjectHUMAN TSH RECEPTOR-
dc.subjectEXTRACELLULAR DOMAIN-
dc.subjectCOMBINATORIAL LIBRARIES-
dc.subjectESCHERICHIA-COLI-
dc.subjectVACCINIA VIRUS-
dc.subjectAUTOANTIBODIES-
dc.subjectEXPRESSION-
dc.subjectPROTEINS-
dc.subjectPURIFICATION-
dc.subjectANTIBODIES-
dc.titleIdentification of the peptides that inhibit the stimulation of thyrotropin receptor by Graves' immunoglobulin G from peptide libraries-
dc.typeArticle-
dc.contributor.college생명과학과-
dc.identifier.doi10.1210/en.138.2.617-
dc.author.googlePark, JY-
dc.author.googleKim, IJ-
dc.author.googleLee, MH-
dc.author.googleSeo, JK-
dc.author.googleSuh, PG-
dc.author.googleCho, BY-
dc.author.googleRyu, SH-
dc.author.googleChae, CB-
dc.relation.volume138-
dc.relation.issue2-
dc.relation.startpage617-
dc.relation.lastpage626-
dc.contributor.id10052640-
dc.relation.journalENDOCRINOLOGY-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationENDOCRINOLOGY, v.138, no.2, pp.617 - 626-
dc.identifier.wosidA1997WC64600016-
dc.date.tcdate2019-01-01-
dc.citation.endPage626-
dc.citation.number2-
dc.citation.startPage617-
dc.citation.titleENDOCRINOLOGY-
dc.citation.volume138-
dc.contributor.affiliatedAuthorSuh, PG-
dc.contributor.affiliatedAuthorRyu, SH-
dc.identifier.scopusid2-s2.0-0010394491-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc23-
dc.type.docTypeArticle-
dc.subject.keywordPlusHUMAN TSH RECEPTOR-
dc.subject.keywordPlusEXTRACELLULAR DOMAIN-
dc.subject.keywordPlusCOMBINATORIAL LIBRARIES-
dc.subject.keywordPlusESCHERICHIA-COLI-
dc.subject.keywordPlusVACCINIA VIRUS-
dc.subject.keywordPlusAUTOANTIBODIES-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusPROTEINS-
dc.subject.keywordPlusPURIFICATION-
dc.subject.keywordPlusANTIBODIES-
dc.relation.journalWebOfScienceCategoryEndocrinology & Metabolism-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEndocrinology & Metabolism-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

류성호RYU, SUNG HO
Dept of Life Sciences
Read more

Views & Downloads

Browse