CONTROL OF GRASP STIFFNESS USING A MULTIFINGERED ROBOT HAND WITH REDUNDANT JOINTS
SCIE
SCOPUS
- Title
- CONTROL OF GRASP STIFFNESS USING A MULTIFINGERED ROBOT HAND WITH REDUNDANT JOINTS
- Authors
- CHOI, HR; CHUNG, WK; YOUM, Y
- Date Issued
- 1995-07
- Publisher
- CAMBRIDGE UNIV PRESS
- Abstract
- This paper addresses a method of satisfactorily controlling the grasp of objects. Emphasis is placed on achieving the desired stiffness of a grasped object as accurately as possible, especially when the fingers have redundant joints. A model describing the relation between stiffness and force is derived. Based upon this model, a hierarchical control scheme of the grasp stiffness, called decentralized object stiffness control (DOSC) is proposed. DOSC is composed of a fingertip stiffness synthesis (FSS) algorithm and orthogonal stiffness decomposition control (OSDC). Employing the proposed FSS always achieves the desired grasp stiffness by solving the constrained least square problem. The computed fingertip stiffness is achieved by OSDC. It offers a feasible way of controlling the fingertip stiffness as well as maintaining the stability of the finger configuration by modulating the joint stiffness. The developed control method is implemented on a two-fingered planar robot hand one finger of which has a redundant joint. The effectiveness of the control method is confirmed experimentally.
- Keywords
- STABLE GRASP; OBJECT STIFFNESS CONTROL; REDUNDANT JOINT; 2-FINGERED ROBOT HAND
- URI
- https://oasis.postech.ac.kr/handle/2014.oak/21749
- DOI
- 10.1017/S0263574700018786
- ISSN
- 0263-5747
- Article Type
- Article
- Citation
- ROBOTICA, vol. 13, page. 351 - 362, 1995-07
- Files in This Item:
- There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.