Open Access System for Information Sharing

Login Library

 

Article
Cited 225 time in webofscience Cited 0 time in scopus
Metadata Downloads

AtPDR12 contributes to lead resistance in arabidopsis SCIE SCOPUS

Title
AtPDR12 contributes to lead resistance in arabidopsis
Authors
Lee, MLee, KLee, JNoh, EWLee, Y
Date Issued
2005-06
Publisher
AMER SOC PLANT BIOLOGISTS
Abstract
Arabidopsis ( Arabidopsis thaliana) contains about 130 ATP- binding cassette ( ABC) proteins, which are likely to contribute to the transport of diverse materials, including toxic substances. However, the substrates of ABC transporters remain unknown in most cases. We tested which ABC transporter is involved in detoxification of lead [ Pb( II)]. Among the many tested, we found that the message level of only AtPDR12 increased in both shoots and roots of Pb( II)- treated Arabidopsis, suggesting that it may be involved in the detoxification of Pb( II). AtPDR12- knockout plants ( atpdr12) were used to further test this possibility. In Pb( II)- containing medium, atpdr12 plants grew less well and had higher Pb contents than those of wild- type plants. In contrast, AtPDR12- overexpressing Arabidopsis plants were more resistant to Pb( II) and had lower Pb contents than wild- type plants. The mutant phenotypes and their Pb contents, as well as the localization of the GFP: AtPDR12 fusion protein at the plasma membrane, suggest that AtPDR12 functions as a pump to exclude Pb( II) and/ or Pb( II)- containing toxic compounds from the cytoplasm. Inhibition of glutathione synthesis by addition of buthionine sulfoximine to the growth medium exacerbated the Pb( II)- sensitive phenotype of atpdr12 plants, consistent with a glutathione- dependent detoxification mechanism operating in parallel with an AtPDR12- dependent mechanism. Thus, we propose that AtPDR12 is an ABC transporter that contributes to Pb( II) resistance in Arabidopsis.
Keywords
METAL-BINDING PEPTIDES; TRANS-GOLGI NETWORK; SACCHAROMYCES-CEREVISIAE; ABC TRANSPORTERS; ESCHERICHIA-COLI; CENTRAL VACUOLE; PROTEIN; GENE; YEAST; THALIANA
URI
https://oasis.postech.ac.kr/handle/2014.oak/24546
DOI
10.1109/PP.104.05810
ISSN
0032-0889
Article Type
Article
Citation
PLANT PHYSIOLOGY, vol. 138, no. 2, page. 827 - 836, 2005-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이영숙LEE, YOUNGSOOK
Dept of Life Sciences
Read more

Views & Downloads

Browse