Open Access System for Information Sharing

Login Library

 

Article
Cited 37 time in webofscience Cited 0 time in scopus
Metadata Downloads

Amino acids induce peptide uptake via accelerated degradation of CUP9, a transcriptional repressor of the PTR2 peptide transporter SCIE SCOPUS

Title
Amino acids induce peptide uptake via accelerated degradation of CUP9, a transcriptional repressor of the PTR2 peptide transporter
Authors
Xia, ZXTurner, GCHwang, CSByrd, CVarshavsky, A
Date Issued
2008-10-24
Publisher
ASBMB
Abstract
Multiple pathways link expression of PTR2, the transporter of di- and tripeptides in the yeast Saccharomyces cerevisiae, to the availability and quality of nitrogen sources. Previous work has shown that induction of PTR2 by extracellular amino acids requires, in particular, SSY1 and PTR3. SSY1 is structurally similar to amino acid transporters but functions as a sensor of amino acids. PTR3 acts downstream of SSY1. Expression of the PTR2 peptide transporter is induced not only by amino acids but also by dipeptides with destabilizing N-terminal residues. These dipeptides bind to UBR1, the ubiquitin ligase of the N-end rule pathway, and allosterically accelerate the UBR1-dependent degradation of CUP9, a transcriptional repressor of PTR2. UBR1 targets CUP9 through its internal degron. Here we demonstrate that the repression of PTR2 by CUP9 requires TUP1 and SSN6, the corepressor proteins that form a complex with CUP9. We also show that the induction of PTR2 by amino acids is mediated by the UBR1-dependent acceleration of CUP9 degradation that requires both SSY1 and PTR3. The acceleration of CUP9 degradation is shown to be attained without increasing the activity of the N-end rule pathway toward substrates with destabilizing N-terminal residues. We also found that GAP1, a general amino acid transporter, strongly contributes to the induction of PTR2 by Trp. Although several aspects of this complex circuit remain to be understood, our findings establish new functional links between the amino acids-sensing SPS system, the CUP9-TUP1-SSN6 repressor complex, the PTR2 peptide transporter, and the UBR1-dependent N-end rule pathway.
Keywords
END RULE PATHWAY; PERMEASE GENE BAP2; SACCHAROMYCES-CEREVISIAE; UBIQUITIN LIGASE; IN-VIVO; ENDOPROTEOLYTIC ACTIVATION; PROTEOLYTIC PATHWAY; PLASMA-MEMBRANE; YEAST; PROTEIN
URI
https://oasis.postech.ac.kr/handle/2014.oak/24999
DOI
10.1074/jbc.M803980200
ISSN
0021-9258
Article Type
Article
Citation
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, no. 43, page. 28958 - 28968, 2008-10-24
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

황철상HWANG, CHEOL SANG
Dept of Life Sciences
Read more

Views & Downloads

Browse