Open Access System for Information Sharing

Login Library

 

Article
Cited 20 time in webofscience Cited 20 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKono, S-
dc.contributor.authorSaito, T-
dc.contributor.authorKang, SH-
dc.contributor.authorJung, WY-
dc.contributor.authorKim, BY-
dc.contributor.authorKawata, H-
dc.contributor.authorGoto, T-
dc.contributor.authorKakefuda, Y-
dc.contributor.authorYeom, HW-
dc.date.accessioned2016-04-01T02:22:11Z-
dc.date.available2016-04-01T02:22:11Z-
dc.date.created2011-03-21-
dc.date.issued2010-07-15-
dc.identifier.issn0039-6028-
dc.identifier.other2010-OAK-0000022964-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/25002-
dc.description.abstractThe properties of surface conductivity (SC) of impurity-non-doped CVD diamond (001) samples were studied by various methods of sheet-resistance (R-s) measurement, Hall-effect measurement, XPS, UPS, SES, SR-PES, PEEM and 1D band simulation taking into account special emphases on deriving the information about the surface band diagram (SBD). The R-s values in UHV conditions were determined after no-annealing or 200 similar to 300 degrees C annealing in UHV. C 1 s XPS profiles were measured in detail in bulk-sensitive and surface-sensitive modes of photoelectron detection. The energy positions of valence band top (E-v) relative to the Fermi level (E-F) in UHV conditions after no-annealing or 200 similar to 300 degrees C annealing in UHV were determined. One of the samples was subjected to SR-PES, PEEM measurements. The SBDs were simulated by a band simulator from the determined R-s and E-v - E-F values for three samples based on the two models of surface conductivity, namely, so-called surface transfer doping (STD) model and downward band bending with shallow acceptor (DBB/SA) model. For the DBB/SA model, there appeared downward bends of SBDs toward the surface at a depth range of similar to 1 nm. C 1 s XPS profiles were then simulated from the simulated SBDs. Comparison of simulated C 1 s XPS profiles to the experimental ones showed that DBB/SA model reproduces the C 1 s XPS profiles properly. PEEM observation of a sample can be explained by the SBD based on the DBB/SA model. Mechanism of SC of CVD diamonds is discussed on the basis of these findings. It is suggested that the STD model combined with SBD of DBB/SA model explains the surface conductivity change due to environmental changes in actual cases of CVD diamond SC with the presence of surface E-F controlling defects. (C) 2010 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.relation.isPartOfSURFACE SCIENCE-
dc.subjectChemical vapor deposition-
dc.subjectDiamond-
dc.subject(100) surface-
dc.subjectSurface conductivity-
dc.subjectEnergy band diagram-
dc.subjectElectron spectroscopy-
dc.subjectPhotoemission electron microscopy-
dc.subjectPHOTOELECTRON-SPECTROSCOPY-
dc.subjectELECTRONIC-PROPERTIES-
dc.subjectCARBON FILMS-
dc.subjectGROWTH-
dc.subjectSPECTRA-
dc.subjectSTATES-
dc.subjectSP(3)-
dc.subjectXPS-
dc.titleBand diagram for chemical vapor deposition diamond surface conductive layer: presence of downward band bending due to shallow acceptors-
dc.typeArticle-
dc.contributor.college물리학과-
dc.identifier.doi10.1016/J.SUSC.2010.03.031-
dc.author.googleKono, S-
dc.author.googleSaito, T-
dc.author.googleKang, SH-
dc.author.googleJung, WY-
dc.author.googleKim, BY-
dc.author.googleKawata, H-
dc.author.googleGoto, T-
dc.author.googleKakefuda, Y-
dc.author.googleYeom, HW-
dc.relation.volume604-
dc.relation.issue13-14-
dc.relation.startpage1148-
dc.relation.lastpage1165-
dc.contributor.id10080808-
dc.relation.journalSURFACE SCIENCE-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationSURFACE SCIENCE, v.604, no.13-14, pp.1148 - 1165-
dc.identifier.wosid000279497700013-
dc.date.tcdate2019-02-01-
dc.citation.endPage1165-
dc.citation.number13-14-
dc.citation.startPage1148-
dc.citation.titleSURFACE SCIENCE-
dc.citation.volume604-
dc.contributor.affiliatedAuthorYeom, HW-
dc.identifier.scopusid2-s2.0-77953286280-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc14-
dc.description.scptc15*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusPHOTOELECTRON-SPECTROSCOPY-
dc.subject.keywordPlusELECTRONIC-PROPERTIES-
dc.subject.keywordPlusCARBON FILMS-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusSPECTRA-
dc.subject.keywordPlusSTATES-
dc.subject.keywordPlusSP(3)-
dc.subject.keywordPlusXPS-
dc.subject.keywordAuthorChemical vapor deposition-
dc.subject.keywordAuthorDiamond-
dc.subject.keywordAuthor(100) surface-
dc.subject.keywordAuthorSurface conductivity-
dc.subject.keywordAuthorEnergy band diagram-
dc.subject.keywordAuthorElectron spectroscopy-
dc.subject.keywordAuthorPhotoemission electron microscopy-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse