Open Access System for Information Sharing

Login Library

 

Article
Cited 10 time in webofscience Cited 9 time in scopus
Metadata Downloads

Factors Influencing Tensile Ductility of OFHC Cu Having Different Ultrafine Grained Structures SCIE SCOPUS

Title
Factors Influencing Tensile Ductility of OFHC Cu Having Different Ultrafine Grained Structures
Authors
Park, LJKim, HWLee, CSPark, KT
Date Issued
2010-11
Publisher
JAPAN INST METALS
Abstract
Tensile ductility of OFHC Cu with the different ultrafine grained (UFG) structures, which were fabricated by the different routes of equal channel angular pressing (ECAP), was associated in detail with the microstructural characteristics developed by ECAP. OFHC Cu having the lamellar and equiaxed UFG structures was prepared by ECAP of routes A and B-c, respectively up to 8 and 16 passes. Their microstructures were closely examined by transmission electron microscopy and orientation image mapping. Tensile tests at room temperature were conducted on the ECAPed samples under the quasi-static condition of 10(-3) s(-1) and I s(-1). Uniform elongation of the lamellar UFG samples decreased with increasing the ECAP passage while both uniform and total elongations of the equiaxed UFG samples increased. In the case of route A producing the lamellar UFG structure, the fractions of high angle grain boundaries and grains less than 0.5 mu m increased significantly but an analysis revealed that the dislocation free length decreased with increasing the ECAP passage. For route B-c, resulting in the equiaxed UFG structure, the fraction of high angle grain boundaries increased but the grain size distribution and the dislocation free length remained nearly unchanged with increasing the ECAP passage. From the present experiments and analyses, it was found that tensile ductility of lamellar UFO OFHC Cu is primarily controlled by the dislocation free length and that of the equiaxed one is mainly dependent on the fraction of high angle grain boundaries. [doi:10.2320/matertrans.M2010089]
Keywords
oxygen free high conductivity (OFHC) copper; ultrafine grains; equal channel angular pressing; grain morphology; ductility; SEVERE PLASTIC-DEFORMATION; CHANNEL ANGULAR EXTRUSION; NANOSTRUCTURED MATERIALS; ALUMINUM-ALLOYS; FLOW-STRESS; MICROSTRUCTURAL DEVELOPMENT; SIZE; STRENGTH; KINETICS; METALS
URI
https://oasis.postech.ac.kr/handle/2014.oak/25088
DOI
10.2320/MATERTRANS.M2010089
ISSN
1345-9678
Article Type
Article
Citation
MATERIALS TRANSACTIONS, vol. 51, no. 11, page. 2049 - 2055, 2010-11
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이종수LEE, CHONG SOO
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse